Copied to
clipboard

G = D28.5D4order 448 = 26·7

5th non-split extension by D28 of D4 acting via D4/C2=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D28.5D4, Dic14.5D4, M4(2).4D14, (C2×C4).7D28, (C2×C28).9D4, C4.81(D4×D7), C8⋊D147C2, C28.98(C2×D4), (C2×Q8).6D14, D284C44C2, C4.10D42D7, C71(D4.8D4), C14.18C22≀C2, C28.23D41C2, (C2×C28).10C23, C4○D28.6C22, C22.13(C2×D28), (Q8×C14).8C22, Q8.10D141C2, (C2×D28).41C22, C2.21(C22⋊D28), (C4×Dic7).2C22, (C7×M4(2)).3C22, (C2×C14).23(C2×D4), (C7×C4.10D4)⋊4C2, (C2×C4).10(C22×D7), SmallGroup(448,287)

Series: Derived Chief Lower central Upper central

C1C2×C28 — D28.5D4
C1C7C14C28C2×C28C4○D28Q8.10D14 — D28.5D4
C7C14C2×C28 — D28.5D4
C1C2C2×C4C4.10D4

Generators and relations for D28.5D4
 G = < a,b,c,d | a28=b2=1, c4=a14, d2=a21, bab=a-1, cac-1=a15, ad=da, cbc-1=a7b, dbd-1=a21b, dcd-1=a21c3 >

Subgroups: 940 in 146 conjugacy classes, 39 normal (17 characteristic)
C1, C2, C2, C4, C4, C22, C22, C7, C8, C2×C4, C2×C4, C2×C4, D4, Q8, C23, D7, C14, C14, C42, C22⋊C4, M4(2), D8, SD16, C2×D4, C2×Q8, C2×Q8, C4○D4, Dic7, C28, C28, D14, C2×C14, C4.10D4, C4≀C2, C4.4D4, C8⋊C22, 2- 1+4, C56, Dic14, Dic14, C4×D7, D28, D28, C2×Dic7, C7⋊D4, C2×C28, C2×C28, C7×Q8, C22×D7, D4.8D4, C56⋊C2, D56, C4×Dic7, D14⋊C4, C7×M4(2), C2×D28, C4○D28, C4○D28, Q8×D7, Q82D7, Q8×C14, D284C4, C7×C4.10D4, C8⋊D14, C28.23D4, Q8.10D14, D28.5D4
Quotients: C1, C2, C22, D4, C23, D7, C2×D4, D14, C22≀C2, D28, C22×D7, D4.8D4, C2×D28, D4×D7, C22⋊D28, D28.5D4

Smallest permutation representation of D28.5D4
On 112 points
Generators in S112
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 49)(2 48)(3 47)(4 46)(5 45)(6 44)(7 43)(8 42)(9 41)(10 40)(11 39)(12 38)(13 37)(14 36)(15 35)(16 34)(17 33)(18 32)(19 31)(20 30)(21 29)(22 56)(23 55)(24 54)(25 53)(26 52)(27 51)(28 50)(57 86)(58 85)(59 112)(60 111)(61 110)(62 109)(63 108)(64 107)(65 106)(66 105)(67 104)(68 103)(69 102)(70 101)(71 100)(72 99)(73 98)(74 97)(75 96)(76 95)(77 94)(78 93)(79 92)(80 91)(81 90)(82 89)(83 88)(84 87)
(1 43 22 50 15 29 8 36)(2 30 23 37 16 44 9 51)(3 45 24 52 17 31 10 38)(4 32 25 39 18 46 11 53)(5 47 26 54 19 33 12 40)(6 34 27 41 20 48 13 55)(7 49 28 56 21 35 14 42)(57 90 78 97 71 104 64 111)(58 105 79 112 72 91 65 98)(59 92 80 99 73 106 66 85)(60 107 81 86 74 93 67 100)(61 94 82 101 75 108 68 87)(62 109 83 88 76 95 69 102)(63 96 84 103 77 110 70 89)
(1 85 22 106 15 99 8 92)(2 86 23 107 16 100 9 93)(3 87 24 108 17 101 10 94)(4 88 25 109 18 102 11 95)(5 89 26 110 19 103 12 96)(6 90 27 111 20 104 13 97)(7 91 28 112 21 105 14 98)(29 59 50 80 43 73 36 66)(30 60 51 81 44 74 37 67)(31 61 52 82 45 75 38 68)(32 62 53 83 46 76 39 69)(33 63 54 84 47 77 40 70)(34 64 55 57 48 78 41 71)(35 65 56 58 49 79 42 72)

G:=sub<Sym(112)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,49)(2,48)(3,47)(4,46)(5,45)(6,44)(7,43)(8,42)(9,41)(10,40)(11,39)(12,38)(13,37)(14,36)(15,35)(16,34)(17,33)(18,32)(19,31)(20,30)(21,29)(22,56)(23,55)(24,54)(25,53)(26,52)(27,51)(28,50)(57,86)(58,85)(59,112)(60,111)(61,110)(62,109)(63,108)(64,107)(65,106)(66,105)(67,104)(68,103)(69,102)(70,101)(71,100)(72,99)(73,98)(74,97)(75,96)(76,95)(77,94)(78,93)(79,92)(80,91)(81,90)(82,89)(83,88)(84,87), (1,43,22,50,15,29,8,36)(2,30,23,37,16,44,9,51)(3,45,24,52,17,31,10,38)(4,32,25,39,18,46,11,53)(5,47,26,54,19,33,12,40)(6,34,27,41,20,48,13,55)(7,49,28,56,21,35,14,42)(57,90,78,97,71,104,64,111)(58,105,79,112,72,91,65,98)(59,92,80,99,73,106,66,85)(60,107,81,86,74,93,67,100)(61,94,82,101,75,108,68,87)(62,109,83,88,76,95,69,102)(63,96,84,103,77,110,70,89), (1,85,22,106,15,99,8,92)(2,86,23,107,16,100,9,93)(3,87,24,108,17,101,10,94)(4,88,25,109,18,102,11,95)(5,89,26,110,19,103,12,96)(6,90,27,111,20,104,13,97)(7,91,28,112,21,105,14,98)(29,59,50,80,43,73,36,66)(30,60,51,81,44,74,37,67)(31,61,52,82,45,75,38,68)(32,62,53,83,46,76,39,69)(33,63,54,84,47,77,40,70)(34,64,55,57,48,78,41,71)(35,65,56,58,49,79,42,72)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,49)(2,48)(3,47)(4,46)(5,45)(6,44)(7,43)(8,42)(9,41)(10,40)(11,39)(12,38)(13,37)(14,36)(15,35)(16,34)(17,33)(18,32)(19,31)(20,30)(21,29)(22,56)(23,55)(24,54)(25,53)(26,52)(27,51)(28,50)(57,86)(58,85)(59,112)(60,111)(61,110)(62,109)(63,108)(64,107)(65,106)(66,105)(67,104)(68,103)(69,102)(70,101)(71,100)(72,99)(73,98)(74,97)(75,96)(76,95)(77,94)(78,93)(79,92)(80,91)(81,90)(82,89)(83,88)(84,87), (1,43,22,50,15,29,8,36)(2,30,23,37,16,44,9,51)(3,45,24,52,17,31,10,38)(4,32,25,39,18,46,11,53)(5,47,26,54,19,33,12,40)(6,34,27,41,20,48,13,55)(7,49,28,56,21,35,14,42)(57,90,78,97,71,104,64,111)(58,105,79,112,72,91,65,98)(59,92,80,99,73,106,66,85)(60,107,81,86,74,93,67,100)(61,94,82,101,75,108,68,87)(62,109,83,88,76,95,69,102)(63,96,84,103,77,110,70,89), (1,85,22,106,15,99,8,92)(2,86,23,107,16,100,9,93)(3,87,24,108,17,101,10,94)(4,88,25,109,18,102,11,95)(5,89,26,110,19,103,12,96)(6,90,27,111,20,104,13,97)(7,91,28,112,21,105,14,98)(29,59,50,80,43,73,36,66)(30,60,51,81,44,74,37,67)(31,61,52,82,45,75,38,68)(32,62,53,83,46,76,39,69)(33,63,54,84,47,77,40,70)(34,64,55,57,48,78,41,71)(35,65,56,58,49,79,42,72) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,49),(2,48),(3,47),(4,46),(5,45),(6,44),(7,43),(8,42),(9,41),(10,40),(11,39),(12,38),(13,37),(14,36),(15,35),(16,34),(17,33),(18,32),(19,31),(20,30),(21,29),(22,56),(23,55),(24,54),(25,53),(26,52),(27,51),(28,50),(57,86),(58,85),(59,112),(60,111),(61,110),(62,109),(63,108),(64,107),(65,106),(66,105),(67,104),(68,103),(69,102),(70,101),(71,100),(72,99),(73,98),(74,97),(75,96),(76,95),(77,94),(78,93),(79,92),(80,91),(81,90),(82,89),(83,88),(84,87)], [(1,43,22,50,15,29,8,36),(2,30,23,37,16,44,9,51),(3,45,24,52,17,31,10,38),(4,32,25,39,18,46,11,53),(5,47,26,54,19,33,12,40),(6,34,27,41,20,48,13,55),(7,49,28,56,21,35,14,42),(57,90,78,97,71,104,64,111),(58,105,79,112,72,91,65,98),(59,92,80,99,73,106,66,85),(60,107,81,86,74,93,67,100),(61,94,82,101,75,108,68,87),(62,109,83,88,76,95,69,102),(63,96,84,103,77,110,70,89)], [(1,85,22,106,15,99,8,92),(2,86,23,107,16,100,9,93),(3,87,24,108,17,101,10,94),(4,88,25,109,18,102,11,95),(5,89,26,110,19,103,12,96),(6,90,27,111,20,104,13,97),(7,91,28,112,21,105,14,98),(29,59,50,80,43,73,36,66),(30,60,51,81,44,74,37,67),(31,61,52,82,45,75,38,68),(32,62,53,83,46,76,39,69),(33,63,54,84,47,77,40,70),(34,64,55,57,48,78,41,71),(35,65,56,58,49,79,42,72)]])

49 conjugacy classes

class 1 2A2B2C2D2E4A4B4C4D4E4F4G4H7A7B7C8A8B14A14B14C14D14E14F28A···28F28G···28L56A···56L
order122222444444447778814141414141428···2828···2856···56
size112282856224428282828222882224444···48···88···8

49 irreducible representations

dim1111112222222448
type+++++++++++++++
imageC1C2C2C2C2C2D4D4D4D7D14D14D28D4.8D4D4×D7D28.5D4
kernelD28.5D4D284C4C7×C4.10D4C8⋊D14C28.23D4Q8.10D14Dic14D28C2×C28C4.10D4M4(2)C2×Q8C2×C4C7C4C1
# reps12121122236312263

Matrix representation of D28.5D4 in GL8(𝔽113)

3408900000
0340890000
5908800000
0590880000
000015000
000009800
000000980
000000015
,
001000000
000100000
340000000
034000000
000001500
000098000
000000098
000000150
,
0112000000
10000000
0001120000
00100000
00000100
000015000
0000000112
000000150
,
1120000000
01000000
0011200000
00010000
0000000112
000000150
0000011200
000098000

G:=sub<GL(8,GF(113))| [34,0,59,0,0,0,0,0,0,34,0,59,0,0,0,0,89,0,88,0,0,0,0,0,0,89,0,88,0,0,0,0,0,0,0,0,15,0,0,0,0,0,0,0,0,98,0,0,0,0,0,0,0,0,98,0,0,0,0,0,0,0,0,15],[0,0,34,0,0,0,0,0,0,0,0,34,0,0,0,0,10,0,0,0,0,0,0,0,0,10,0,0,0,0,0,0,0,0,0,0,0,98,0,0,0,0,0,0,15,0,0,0,0,0,0,0,0,0,0,15,0,0,0,0,0,0,98,0],[0,1,0,0,0,0,0,0,112,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,112,0,0,0,0,0,0,0,0,0,0,15,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,15,0,0,0,0,0,0,112,0],[112,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,112,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,98,0,0,0,0,0,0,112,0,0,0,0,0,0,15,0,0,0,0,0,0,112,0,0,0] >;

D28.5D4 in GAP, Magma, Sage, TeX

D_{28}._5D_4
% in TeX

G:=Group("D28.5D4");
// GroupNames label

G:=SmallGroup(448,287);
// by ID

G=gap.SmallGroup(448,287);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,232,254,219,226,1123,570,136,1684,438,18822]);
// Polycyclic

G:=Group<a,b,c,d|a^28=b^2=1,c^4=a^14,d^2=a^21,b*a*b=a^-1,c*a*c^-1=a^15,a*d=d*a,c*b*c^-1=a^7*b,d*b*d^-1=a^21*b,d*c*d^-1=a^21*c^3>;
// generators/relations

׿
×
𝔽