Copied to
clipboard

G = C28.D4order 224 = 25·7

8th non-split extension by C28 of D4 acting via D4/C2=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C28.8D4, C23.Dic7, (C2×D4).2D7, (C2×C4).3D14, (D4×C14).2C2, C72(C4.D4), C4.Dic73C2, C4.13(C7⋊D4), (C22×C14).2C4, (C2×C28).17C22, C2.4(C23.D7), C22.2(C2×Dic7), C14.14(C22⋊C4), (C2×C14).28(C2×C4), SmallGroup(224,39)

Series: Derived Chief Lower central Upper central

C1C2×C14 — C28.D4
C1C7C14C28C2×C28C4.Dic7 — C28.D4
C7C14C2×C14 — C28.D4
C1C2C2×C4C2×D4

Generators and relations for C28.D4
 G = < a,b,c | a28=1, b4=a14, c2=a21, bab-1=a-1, cac-1=a13, cbc-1=a7b3 >

2C2
4C2
4C2
2C22
2C22
4C22
4C22
2C14
4C14
4C14
2D4
2D4
14C8
14C8
2C2×C14
2C2×C14
4C2×C14
4C2×C14
7M4(2)
7M4(2)
2C7×D4
2C7⋊C8
2C7⋊C8
2C7×D4
7C4.D4

Smallest permutation representation of C28.D4
On 56 points
Generators in S56
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)
(1 34 22 41 15 48 8 55)(2 33 23 40 16 47 9 54)(3 32 24 39 17 46 10 53)(4 31 25 38 18 45 11 52)(5 30 26 37 19 44 12 51)(6 29 27 36 20 43 13 50)(7 56 28 35 21 42 14 49)
(1 48 22 41 15 34 8 55)(2 33 23 54 16 47 9 40)(3 46 24 39 17 32 10 53)(4 31 25 52 18 45 11 38)(5 44 26 37 19 30 12 51)(6 29 27 50 20 43 13 36)(7 42 28 35 21 56 14 49)

G:=sub<Sym(56)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56), (1,34,22,41,15,48,8,55)(2,33,23,40,16,47,9,54)(3,32,24,39,17,46,10,53)(4,31,25,38,18,45,11,52)(5,30,26,37,19,44,12,51)(6,29,27,36,20,43,13,50)(7,56,28,35,21,42,14,49), (1,48,22,41,15,34,8,55)(2,33,23,54,16,47,9,40)(3,46,24,39,17,32,10,53)(4,31,25,52,18,45,11,38)(5,44,26,37,19,30,12,51)(6,29,27,50,20,43,13,36)(7,42,28,35,21,56,14,49)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56), (1,34,22,41,15,48,8,55)(2,33,23,40,16,47,9,54)(3,32,24,39,17,46,10,53)(4,31,25,38,18,45,11,52)(5,30,26,37,19,44,12,51)(6,29,27,36,20,43,13,50)(7,56,28,35,21,42,14,49), (1,48,22,41,15,34,8,55)(2,33,23,54,16,47,9,40)(3,46,24,39,17,32,10,53)(4,31,25,52,18,45,11,38)(5,44,26,37,19,30,12,51)(6,29,27,50,20,43,13,36)(7,42,28,35,21,56,14,49) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)], [(1,34,22,41,15,48,8,55),(2,33,23,40,16,47,9,54),(3,32,24,39,17,46,10,53),(4,31,25,38,18,45,11,52),(5,30,26,37,19,44,12,51),(6,29,27,36,20,43,13,50),(7,56,28,35,21,42,14,49)], [(1,48,22,41,15,34,8,55),(2,33,23,54,16,47,9,40),(3,46,24,39,17,32,10,53),(4,31,25,52,18,45,11,38),(5,44,26,37,19,30,12,51),(6,29,27,50,20,43,13,36),(7,42,28,35,21,56,14,49)]])

C28.D4 is a maximal subgroup of
C7⋊C2≀C4  (C2×C28).D4  C24⋊Dic7  (C22×C28)⋊C4  D7×C4.D4  M4(2).19D14  C425D14  D285D4  C56.23D4  C56.44D4  M4(2).D14  M4(2).13D14  (D4×C14).16C4  2+ 1+4⋊D7  2+ 1+4.D7
C28.D4 is a maximal quotient of
C24.Dic7  C28.(C4⋊C4)  C42.7D14  C28.9D8  C28.5Q16

41 conjugacy classes

class 1 2A2B2C2D4A4B7A7B7C8A8B8C8D14A···14I14J···14U28A···28F
order1222244777888814···1414···1428···28
size1124422222282828282···24···44···4

41 irreducible representations

dim11112222244
type++++++-+
imageC1C2C2C4D4D7D14Dic7C7⋊D4C4.D4C28.D4
kernelC28.D4C4.Dic7D4×C14C22×C14C28C2×D4C2×C4C23C4C7C1
# reps121423361216

Matrix representation of C28.D4 in GL4(𝔽113) generated by

71400
10610600
1438016
8975970
,
7001110
4301112
211430
920700
,
7001110
0011
211430
930700
G:=sub<GL(4,GF(113))| [7,106,14,89,14,106,38,75,0,0,0,97,0,0,16,0],[70,43,21,92,0,0,1,0,111,1,43,70,0,112,0,0],[70,0,21,93,0,0,1,0,111,1,43,70,0,1,0,0] >;

C28.D4 in GAP, Magma, Sage, TeX

C_{28}.D_4
% in TeX

G:=Group("C28.D4");
// GroupNames label

G:=SmallGroup(224,39);
// by ID

G=gap.SmallGroup(224,39);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-7,24,121,188,86,579,6917]);
// Polycyclic

G:=Group<a,b,c|a^28=1,b^4=a^14,c^2=a^21,b*a*b^-1=a^-1,c*a*c^-1=a^13,c*b*c^-1=a^7*b^3>;
// generators/relations

Export

Subgroup lattice of C28.D4 in TeX

׿
×
𝔽