Copied to
clipboard

G = Dic14⋊C4order 224 = 25·7

1st semidirect product of Dic14 and C4 acting via C4/C2=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D281C4, C423D7, C4.17D28, C28.33D4, Dic141C4, C71C4≀C2, (C4×C28)⋊6C2, C4.6(C4×D7), C28.16(C2×C4), C4○D28.1C2, (C2×C14).26D4, (C2×C4).66D14, C4.Dic71C2, C2.3(D14⋊C4), C14.1(C22⋊C4), (C2×C28).96C22, C22.7(C7⋊D4), SmallGroup(224,11)

Series: Derived Chief Lower central Upper central

C1C28 — Dic14⋊C4
C1C7C14C2×C14C2×C28C4○D28 — Dic14⋊C4
C7C14C28 — Dic14⋊C4
C1C4C2×C4C42

Generators and relations for Dic14⋊C4
 G = < a,b,c | a28=c4=1, b2=a14, bab-1=a-1, ac=ca, cbc-1=a7b >

2C2
28C2
2C4
2C4
14C22
14C4
2C14
4D7
2C2×C4
7D4
7Q8
14C8
14D4
14C2×C4
2C28
2C28
2D14
2Dic7
7M4(2)
7C4○D4
2C7⋊D4
2C4×D7
2C7⋊C8
2C2×C28
7C4≀C2

Smallest permutation representation of Dic14⋊C4
On 56 points
Generators in S56
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)
(1 50 15 36)(2 49 16 35)(3 48 17 34)(4 47 18 33)(5 46 19 32)(6 45 20 31)(7 44 21 30)(8 43 22 29)(9 42 23 56)(10 41 24 55)(11 40 25 54)(12 39 26 53)(13 38 27 52)(14 37 28 51)
(1 15)(2 16)(3 17)(4 18)(5 19)(6 20)(7 21)(8 22)(9 23)(10 24)(11 25)(12 26)(13 27)(14 28)(29 50 43 36)(30 51 44 37)(31 52 45 38)(32 53 46 39)(33 54 47 40)(34 55 48 41)(35 56 49 42)

G:=sub<Sym(56)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56), (1,50,15,36)(2,49,16,35)(3,48,17,34)(4,47,18,33)(5,46,19,32)(6,45,20,31)(7,44,21,30)(8,43,22,29)(9,42,23,56)(10,41,24,55)(11,40,25,54)(12,39,26,53)(13,38,27,52)(14,37,28,51), (1,15)(2,16)(3,17)(4,18)(5,19)(6,20)(7,21)(8,22)(9,23)(10,24)(11,25)(12,26)(13,27)(14,28)(29,50,43,36)(30,51,44,37)(31,52,45,38)(32,53,46,39)(33,54,47,40)(34,55,48,41)(35,56,49,42)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56), (1,50,15,36)(2,49,16,35)(3,48,17,34)(4,47,18,33)(5,46,19,32)(6,45,20,31)(7,44,21,30)(8,43,22,29)(9,42,23,56)(10,41,24,55)(11,40,25,54)(12,39,26,53)(13,38,27,52)(14,37,28,51), (1,15)(2,16)(3,17)(4,18)(5,19)(6,20)(7,21)(8,22)(9,23)(10,24)(11,25)(12,26)(13,27)(14,28)(29,50,43,36)(30,51,44,37)(31,52,45,38)(32,53,46,39)(33,54,47,40)(34,55,48,41)(35,56,49,42) );

G=PermutationGroup([(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)], [(1,50,15,36),(2,49,16,35),(3,48,17,34),(4,47,18,33),(5,46,19,32),(6,45,20,31),(7,44,21,30),(8,43,22,29),(9,42,23,56),(10,41,24,55),(11,40,25,54),(12,39,26,53),(13,38,27,52),(14,37,28,51)], [(1,15),(2,16),(3,17),(4,18),(5,19),(6,20),(7,21),(8,22),(9,23),(10,24),(11,25),(12,26),(13,27),(14,28),(29,50,43,36),(30,51,44,37),(31,52,45,38),(32,53,46,39),(33,54,47,40),(34,55,48,41),(35,56,49,42)])

Dic14⋊C4 is a maximal subgroup of
D5611C4  D564C4  D7×C4≀C2  C42⋊D14  D44D28  M4(2).22D14  C42.196D14  M4(2)⋊D14  D4.9D28  D4.10D28  C424D14  C425D14  D28.14D4  D285D4  D28.15D4
Dic14⋊C4 is a maximal quotient of
C14.C4≀C2  C4⋊Dic7⋊C4  C4.8Dic28  C4.17D56  C42.D14  C42.2D14  C28.8C42

62 conjugacy classes

class 1 2A2B2C4A4B4C···4G4H7A7B7C8A8B14A···14I28A···28AJ
order1222444···447778814···1428···28
size11228112···22822228282···22···2

62 irreducible representations

dim111111222222222
type+++++++++
imageC1C2C2C2C4C4D4D4D7D14C4≀C2C4×D7D28C7⋊D4Dic14⋊C4
kernelDic14⋊C4C4.Dic7C4×C28C4○D28Dic14D28C28C2×C14C42C2×C4C7C4C4C22C1
# reps1111221133466624

Matrix representation of Dic14⋊C4 in GL2(𝔽29) generated by

227
510
,
152
314
,
185
227
G:=sub<GL(2,GF(29))| [2,5,27,10],[15,3,2,14],[18,2,5,27] >;

Dic14⋊C4 in GAP, Magma, Sage, TeX

{\rm Dic}_{14}\rtimes C_4
% in TeX

G:=Group("Dic14:C4");
// GroupNames label

G:=SmallGroup(224,11);
// by ID

G=gap.SmallGroup(224,11);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-7,121,31,362,579,69,6917]);
// Polycyclic

G:=Group<a,b,c|a^28=c^4=1,b^2=a^14,b*a*b^-1=a^-1,a*c=c*a,c*b*c^-1=a^7*b>;
// generators/relations

Export

Subgroup lattice of Dic14⋊C4 in TeX

׿
×
𝔽