Copied to
clipboard

G = D14⋊Q8order 224 = 25·7

1st semidirect product of D14 and Q8 acting via Q8/C4=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D141Q8, Dic7.7D4, C4⋊C44D7, C2.6(Q8×D7), C2.14(D4×D7), C72(C22⋊Q8), D14⋊C4.2C2, C14.26(C2×D4), (C2×C4).13D14, C14.13(C2×Q8), Dic7⋊C412C2, (C2×Dic14)⋊4C2, C2.15(C4○D28), C14.13(C4○D4), (C2×C14).37C23, (C2×C28).58C22, C22.51(C22×D7), (C2×Dic7).12C22, (C22×D7).21C22, (C7×C4⋊C4)⋊7C2, (C2×C4×D7).9C2, SmallGroup(224,91)

Series: Derived Chief Lower central Upper central

C1C2×C14 — D14⋊Q8
C1C7C14C2×C14C22×D7C2×C4×D7 — D14⋊Q8
C7C2×C14 — D14⋊Q8
C1C22C4⋊C4

Generators and relations for D14⋊Q8
 G = < a,b,c,d | a14=b2=c4=1, d2=c2, bab=cac-1=dad-1=a-1, cbc-1=a5b, dbd-1=a12b, dcd-1=c-1 >

Subgroups: 310 in 74 conjugacy classes, 33 normal (29 characteristic)
C1, C2, C2, C4, C22, C22, C7, C2×C4, C2×C4, Q8, C23, D7, C14, C22⋊C4, C4⋊C4, C4⋊C4, C22×C4, C2×Q8, Dic7, Dic7, C28, D14, D14, C2×C14, C22⋊Q8, Dic14, C4×D7, C2×Dic7, C2×C28, C22×D7, Dic7⋊C4, D14⋊C4, C7×C4⋊C4, C2×Dic14, C2×C4×D7, D14⋊Q8
Quotients: C1, C2, C22, D4, Q8, C23, D7, C2×D4, C2×Q8, C4○D4, D14, C22⋊Q8, C22×D7, C4○D28, D4×D7, Q8×D7, D14⋊Q8

Smallest permutation representation of D14⋊Q8
On 112 points
Generators in S112
(1 2 3 4 5 6 7 8 9 10 11 12 13 14)(15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42)(43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98)(99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 49)(2 48)(3 47)(4 46)(5 45)(6 44)(7 43)(8 56)(9 55)(10 54)(11 53)(12 52)(13 51)(14 50)(15 72)(16 71)(17 84)(18 83)(19 82)(20 81)(21 80)(22 79)(23 78)(24 77)(25 76)(26 75)(27 74)(28 73)(29 87)(30 86)(31 85)(32 98)(33 97)(34 96)(35 95)(36 94)(37 93)(38 92)(39 91)(40 90)(41 89)(42 88)(57 110)(58 109)(59 108)(60 107)(61 106)(62 105)(63 104)(64 103)(65 102)(66 101)(67 100)(68 99)(69 112)(70 111)
(1 36 43 95)(2 35 44 94)(3 34 45 93)(4 33 46 92)(5 32 47 91)(6 31 48 90)(7 30 49 89)(8 29 50 88)(9 42 51 87)(10 41 52 86)(11 40 53 85)(12 39 54 98)(13 38 55 97)(14 37 56 96)(15 108 81 59)(16 107 82 58)(17 106 83 57)(18 105 84 70)(19 104 71 69)(20 103 72 68)(21 102 73 67)(22 101 74 66)(23 100 75 65)(24 99 76 64)(25 112 77 63)(26 111 78 62)(27 110 79 61)(28 109 80 60)
(1 70 43 105)(2 69 44 104)(3 68 45 103)(4 67 46 102)(5 66 47 101)(6 65 48 100)(7 64 49 99)(8 63 50 112)(9 62 51 111)(10 61 52 110)(11 60 53 109)(12 59 54 108)(13 58 55 107)(14 57 56 106)(15 39 81 98)(16 38 82 97)(17 37 83 96)(18 36 84 95)(19 35 71 94)(20 34 72 93)(21 33 73 92)(22 32 74 91)(23 31 75 90)(24 30 76 89)(25 29 77 88)(26 42 78 87)(27 41 79 86)(28 40 80 85)

G:=sub<Sym(112)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,49)(2,48)(3,47)(4,46)(5,45)(6,44)(7,43)(8,56)(9,55)(10,54)(11,53)(12,52)(13,51)(14,50)(15,72)(16,71)(17,84)(18,83)(19,82)(20,81)(21,80)(22,79)(23,78)(24,77)(25,76)(26,75)(27,74)(28,73)(29,87)(30,86)(31,85)(32,98)(33,97)(34,96)(35,95)(36,94)(37,93)(38,92)(39,91)(40,90)(41,89)(42,88)(57,110)(58,109)(59,108)(60,107)(61,106)(62,105)(63,104)(64,103)(65,102)(66,101)(67,100)(68,99)(69,112)(70,111), (1,36,43,95)(2,35,44,94)(3,34,45,93)(4,33,46,92)(5,32,47,91)(6,31,48,90)(7,30,49,89)(8,29,50,88)(9,42,51,87)(10,41,52,86)(11,40,53,85)(12,39,54,98)(13,38,55,97)(14,37,56,96)(15,108,81,59)(16,107,82,58)(17,106,83,57)(18,105,84,70)(19,104,71,69)(20,103,72,68)(21,102,73,67)(22,101,74,66)(23,100,75,65)(24,99,76,64)(25,112,77,63)(26,111,78,62)(27,110,79,61)(28,109,80,60), (1,70,43,105)(2,69,44,104)(3,68,45,103)(4,67,46,102)(5,66,47,101)(6,65,48,100)(7,64,49,99)(8,63,50,112)(9,62,51,111)(10,61,52,110)(11,60,53,109)(12,59,54,108)(13,58,55,107)(14,57,56,106)(15,39,81,98)(16,38,82,97)(17,37,83,96)(18,36,84,95)(19,35,71,94)(20,34,72,93)(21,33,73,92)(22,32,74,91)(23,31,75,90)(24,30,76,89)(25,29,77,88)(26,42,78,87)(27,41,79,86)(28,40,80,85)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,49)(2,48)(3,47)(4,46)(5,45)(6,44)(7,43)(8,56)(9,55)(10,54)(11,53)(12,52)(13,51)(14,50)(15,72)(16,71)(17,84)(18,83)(19,82)(20,81)(21,80)(22,79)(23,78)(24,77)(25,76)(26,75)(27,74)(28,73)(29,87)(30,86)(31,85)(32,98)(33,97)(34,96)(35,95)(36,94)(37,93)(38,92)(39,91)(40,90)(41,89)(42,88)(57,110)(58,109)(59,108)(60,107)(61,106)(62,105)(63,104)(64,103)(65,102)(66,101)(67,100)(68,99)(69,112)(70,111), (1,36,43,95)(2,35,44,94)(3,34,45,93)(4,33,46,92)(5,32,47,91)(6,31,48,90)(7,30,49,89)(8,29,50,88)(9,42,51,87)(10,41,52,86)(11,40,53,85)(12,39,54,98)(13,38,55,97)(14,37,56,96)(15,108,81,59)(16,107,82,58)(17,106,83,57)(18,105,84,70)(19,104,71,69)(20,103,72,68)(21,102,73,67)(22,101,74,66)(23,100,75,65)(24,99,76,64)(25,112,77,63)(26,111,78,62)(27,110,79,61)(28,109,80,60), (1,70,43,105)(2,69,44,104)(3,68,45,103)(4,67,46,102)(5,66,47,101)(6,65,48,100)(7,64,49,99)(8,63,50,112)(9,62,51,111)(10,61,52,110)(11,60,53,109)(12,59,54,108)(13,58,55,107)(14,57,56,106)(15,39,81,98)(16,38,82,97)(17,37,83,96)(18,36,84,95)(19,35,71,94)(20,34,72,93)(21,33,73,92)(22,32,74,91)(23,31,75,90)(24,30,76,89)(25,29,77,88)(26,42,78,87)(27,41,79,86)(28,40,80,85) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14),(15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42),(43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98),(99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,49),(2,48),(3,47),(4,46),(5,45),(6,44),(7,43),(8,56),(9,55),(10,54),(11,53),(12,52),(13,51),(14,50),(15,72),(16,71),(17,84),(18,83),(19,82),(20,81),(21,80),(22,79),(23,78),(24,77),(25,76),(26,75),(27,74),(28,73),(29,87),(30,86),(31,85),(32,98),(33,97),(34,96),(35,95),(36,94),(37,93),(38,92),(39,91),(40,90),(41,89),(42,88),(57,110),(58,109),(59,108),(60,107),(61,106),(62,105),(63,104),(64,103),(65,102),(66,101),(67,100),(68,99),(69,112),(70,111)], [(1,36,43,95),(2,35,44,94),(3,34,45,93),(4,33,46,92),(5,32,47,91),(6,31,48,90),(7,30,49,89),(8,29,50,88),(9,42,51,87),(10,41,52,86),(11,40,53,85),(12,39,54,98),(13,38,55,97),(14,37,56,96),(15,108,81,59),(16,107,82,58),(17,106,83,57),(18,105,84,70),(19,104,71,69),(20,103,72,68),(21,102,73,67),(22,101,74,66),(23,100,75,65),(24,99,76,64),(25,112,77,63),(26,111,78,62),(27,110,79,61),(28,109,80,60)], [(1,70,43,105),(2,69,44,104),(3,68,45,103),(4,67,46,102),(5,66,47,101),(6,65,48,100),(7,64,49,99),(8,63,50,112),(9,62,51,111),(10,61,52,110),(11,60,53,109),(12,59,54,108),(13,58,55,107),(14,57,56,106),(15,39,81,98),(16,38,82,97),(17,37,83,96),(18,36,84,95),(19,35,71,94),(20,34,72,93),(21,33,73,92),(22,32,74,91),(23,31,75,90),(24,30,76,89),(25,29,77,88),(26,42,78,87),(27,41,79,86),(28,40,80,85)]])

D14⋊Q8 is a maximal subgroup of
C14.2- 1+4  C14.102+ 1+4  C14.62- 1+4  C4210D14  C42.93D14  C42.96D14  C42.99D14  C4212D14  Dic1423D4  C4216D14  C42.118D14  C42.122D14  C42.232D14  D2810Q8  C42.133D14  C14.682- 1+4  C14.402+ 1+4  C14.422+ 1+4  C14.492+ 1+4  D7×C22⋊Q8  C14.172- 1+4  Dic1421D4  Dic1422D4  C14.512+ 1+4  C14.522+ 1+4  C14.222- 1+4  C14.582+ 1+4  C14.262- 1+4  C14.792- 1+4  C14.1212+ 1+4  C14.822- 1+4  C4⋊C428D14  C14.622+ 1+4  C14.832- 1+4  C14.842- 1+4  C14.862- 1+4  C42.236D14  C42.148D14  D287Q8  C42.150D14  C42.151D14  C42.154D14  C42.157D14  C42.158D14  C42.160D14  C4223D14  C4224D14  C42.189D14  C42.161D14  C42.162D14  C42.164D14  C42.165D14  C42.171D14  D288Q8  C42.174D14  C42.180D14
D14⋊Q8 is a maximal quotient of
(C2×C28)⋊Q8  Dic7⋊C4⋊C4  C2.(C28⋊Q8)  (C2×Dic7).Q8  D14⋊(C4⋊C4)  D14⋊C4⋊C4  (C2×C4).20D28  (C22×D7).Q8  Dic14⋊Q8  Dic14.Q8  D28⋊Q8  D28.Q8  Dic142Q8  Dic14.2Q8  D282Q8  D28.2Q8  Dic7⋊(C4⋊C4)  (C2×C4)⋊Dic14  (C2×C28).287D4  C4⋊C45Dic7  D14⋊C46C4  (C2×C28).289D4  (C2×C4).45D28

44 conjugacy classes

class 1 2A2B2C2D2E4A4B4C4D4E4F4G4H7A7B7C14A···14I28A···28R
order1222224444444477714···1428···28
size111114142244141428282222···24···4

44 irreducible representations

dim11111122222244
type+++++++-+++-
imageC1C2C2C2C2C2D4Q8D7C4○D4D14C4○D28D4×D7Q8×D7
kernelD14⋊Q8Dic7⋊C4D14⋊C4C7×C4⋊C4C2×Dic14C2×C4×D7Dic7D14C4⋊C4C14C2×C4C2C2C2
# reps122111223291233

Matrix representation of D14⋊Q8 in GL4(𝔽29) generated by

61900
202000
00280
00028
,
10100
171900
0010
00028
,
152100
211400
00028
00280
,
15400
161400
0010
0001
G:=sub<GL(4,GF(29))| [6,20,0,0,19,20,0,0,0,0,28,0,0,0,0,28],[10,17,0,0,1,19,0,0,0,0,1,0,0,0,0,28],[15,21,0,0,21,14,0,0,0,0,0,28,0,0,28,0],[15,16,0,0,4,14,0,0,0,0,1,0,0,0,0,1] >;

D14⋊Q8 in GAP, Magma, Sage, TeX

D_{14}\rtimes Q_8
% in TeX

G:=Group("D14:Q8");
// GroupNames label

G:=SmallGroup(224,91);
// by ID

G=gap.SmallGroup(224,91);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-7,55,506,188,86,6917]);
// Polycyclic

G:=Group<a,b,c,d|a^14=b^2=c^4=1,d^2=c^2,b*a*b=c*a*c^-1=d*a*d^-1=a^-1,c*b*c^-1=a^5*b,d*b*d^-1=a^12*b,d*c*d^-1=c^-1>;
// generators/relations

׿
×
𝔽