Copied to
clipboard

G = C4⋊C428D14order 448 = 26·7

11st semidirect product of C4⋊C4 and D14 acting via D14/D7=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C4⋊C428D14, D145(C4○D4), C22⋊C431D14, (C2×Dic7)⋊21D4, D28⋊C432C2, C23⋊D1416C2, D14⋊D431C2, C22⋊D2820C2, C22.45(D4×D7), D14⋊C427C22, D14⋊Q829C2, (C2×D4).165D14, (C2×C28).73C23, Dic7.49(C2×D4), C14.85(C22×D4), Dic74D420C2, (C2×C14).200C24, Dic7⋊C423C22, C76(C22.19C24), (C4×Dic7)⋊32C22, (C22×C4).322D14, C22.D418D7, C23.27(C22×D7), (C2×Dic14)⋊28C22, (D4×C14).138C22, (C2×D28).156C22, (C22×C14).35C23, C22.221(C23×D7), C23.D7.43C22, C23.23D1421C2, C23.11D1413C2, (C22×C28).368C22, (C2×Dic7).104C23, (C22×Dic7)⋊25C22, (C23×D7).110C22, (C22×D7).208C23, C2.58(C2×D4×D7), C2.62(D7×C4○D4), (C2×C4×D7)⋊22C22, (D7×C22×C4)⋊24C2, (C7×C4⋊C4)⋊26C22, (C2×C14).61(C2×D4), (C2×D42D7)⋊17C2, C14.174(C2×C4○D4), (C2×C7⋊D4)⋊19C22, (C2×C4).63(C22×D7), (C7×C22⋊C4)⋊22C22, (C7×C22.D4)⋊8C2, SmallGroup(448,1109)

Series: Derived Chief Lower central Upper central

C1C2×C14 — C4⋊C428D14
C1C7C14C2×C14C22×D7C23×D7D7×C22×C4 — C4⋊C428D14
C7C2×C14 — C4⋊C428D14
C1C22C22.D4

Generators and relations for C4⋊C428D14
 G = < a,b,c,d | a4=b4=c14=d2=1, bab-1=dad=a-1, cac-1=ab2, cbc-1=b-1, dbd=a2b, dcd=c-1 >

Subgroups: 1644 in 330 conjugacy classes, 107 normal (39 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C7, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C23, D7, C14, C14, C14, C42, C22⋊C4, C22⋊C4, C22⋊C4, C4⋊C4, C4⋊C4, C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C4○D4, C24, Dic7, Dic7, C28, D14, D14, C2×C14, C2×C14, C2×C14, C42⋊C2, C4×D4, C22≀C2, C4⋊D4, C22⋊Q8, C22.D4, C22.D4, C23×C4, C2×C4○D4, Dic14, C4×D7, D28, C2×Dic7, C2×Dic7, C2×Dic7, C7⋊D4, C2×C28, C2×C28, C2×C28, C7×D4, C22×D7, C22×D7, C22×D7, C22×C14, C22.19C24, C4×Dic7, Dic7⋊C4, D14⋊C4, C23.D7, C7×C22⋊C4, C7×C22⋊C4, C7×C4⋊C4, C2×Dic14, C2×C4×D7, C2×C4×D7, C2×C4×D7, C2×D28, D42D7, C22×Dic7, C2×C7⋊D4, C2×C7⋊D4, C22×C28, D4×C14, C23×D7, C23.11D14, Dic74D4, C22⋊D28, D14⋊D4, D28⋊C4, D14⋊Q8, C23.23D14, C23⋊D14, C7×C22.D4, D7×C22×C4, C2×D42D7, C4⋊C428D14
Quotients: C1, C2, C22, D4, C23, D7, C2×D4, C4○D4, C24, D14, C22×D4, C2×C4○D4, C22×D7, C22.19C24, D4×D7, C23×D7, C2×D4×D7, D7×C4○D4, C4⋊C428D14

Smallest permutation representation of C4⋊C428D14
On 112 points
Generators in S112
(1 100 22 82)(2 108 23 76)(3 102 24 84)(4 110 25 78)(5 104 26 72)(6 112 27 80)(7 106 28 74)(8 87 46 68)(9 95 47 62)(10 89 48 70)(11 97 49 64)(12 91 43 58)(13 85 44 66)(14 93 45 60)(15 111 35 79)(16 105 29 73)(17 99 30 81)(18 107 31 75)(19 101 32 83)(20 109 33 77)(21 103 34 71)(36 94 53 61)(37 88 54 69)(38 96 55 63)(39 90 56 57)(40 98 50 65)(41 92 51 59)(42 86 52 67)
(1 88 18 95)(2 96 19 89)(3 90 20 97)(4 98 21 91)(5 92 15 85)(6 86 16 93)(7 94 17 87)(8 106 36 99)(9 100 37 107)(10 108 38 101)(11 102 39 109)(12 110 40 103)(13 104 41 111)(14 112 42 105)(22 69 31 62)(23 63 32 70)(24 57 33 64)(25 65 34 58)(26 59 35 66)(27 67 29 60)(28 61 30 68)(43 78 50 71)(44 72 51 79)(45 80 52 73)(46 74 53 81)(47 82 54 75)(48 76 55 83)(49 84 56 77)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35)(36 37 38 39 40 41 42)(43 44 45 46 47 48 49)(50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98)(99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 30)(2 29)(3 35)(4 34)(5 33)(6 32)(7 31)(8 54)(9 53)(10 52)(11 51)(12 50)(13 56)(14 55)(15 24)(16 23)(17 22)(18 28)(19 27)(20 26)(21 25)(36 47)(37 46)(38 45)(39 44)(40 43)(41 49)(42 48)(57 66)(58 65)(59 64)(60 63)(61 62)(67 70)(68 69)(71 78)(72 77)(73 76)(74 75)(79 84)(80 83)(81 82)(85 90)(86 89)(87 88)(91 98)(92 97)(93 96)(94 95)(99 100)(101 112)(102 111)(103 110)(104 109)(105 108)(106 107)

G:=sub<Sym(112)| (1,100,22,82)(2,108,23,76)(3,102,24,84)(4,110,25,78)(5,104,26,72)(6,112,27,80)(7,106,28,74)(8,87,46,68)(9,95,47,62)(10,89,48,70)(11,97,49,64)(12,91,43,58)(13,85,44,66)(14,93,45,60)(15,111,35,79)(16,105,29,73)(17,99,30,81)(18,107,31,75)(19,101,32,83)(20,109,33,77)(21,103,34,71)(36,94,53,61)(37,88,54,69)(38,96,55,63)(39,90,56,57)(40,98,50,65)(41,92,51,59)(42,86,52,67), (1,88,18,95)(2,96,19,89)(3,90,20,97)(4,98,21,91)(5,92,15,85)(6,86,16,93)(7,94,17,87)(8,106,36,99)(9,100,37,107)(10,108,38,101)(11,102,39,109)(12,110,40,103)(13,104,41,111)(14,112,42,105)(22,69,31,62)(23,63,32,70)(24,57,33,64)(25,65,34,58)(26,59,35,66)(27,67,29,60)(28,61,30,68)(43,78,50,71)(44,72,51,79)(45,80,52,73)(46,74,53,81)(47,82,54,75)(48,76,55,83)(49,84,56,77), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,30)(2,29)(3,35)(4,34)(5,33)(6,32)(7,31)(8,54)(9,53)(10,52)(11,51)(12,50)(13,56)(14,55)(15,24)(16,23)(17,22)(18,28)(19,27)(20,26)(21,25)(36,47)(37,46)(38,45)(39,44)(40,43)(41,49)(42,48)(57,66)(58,65)(59,64)(60,63)(61,62)(67,70)(68,69)(71,78)(72,77)(73,76)(74,75)(79,84)(80,83)(81,82)(85,90)(86,89)(87,88)(91,98)(92,97)(93,96)(94,95)(99,100)(101,112)(102,111)(103,110)(104,109)(105,108)(106,107)>;

G:=Group( (1,100,22,82)(2,108,23,76)(3,102,24,84)(4,110,25,78)(5,104,26,72)(6,112,27,80)(7,106,28,74)(8,87,46,68)(9,95,47,62)(10,89,48,70)(11,97,49,64)(12,91,43,58)(13,85,44,66)(14,93,45,60)(15,111,35,79)(16,105,29,73)(17,99,30,81)(18,107,31,75)(19,101,32,83)(20,109,33,77)(21,103,34,71)(36,94,53,61)(37,88,54,69)(38,96,55,63)(39,90,56,57)(40,98,50,65)(41,92,51,59)(42,86,52,67), (1,88,18,95)(2,96,19,89)(3,90,20,97)(4,98,21,91)(5,92,15,85)(6,86,16,93)(7,94,17,87)(8,106,36,99)(9,100,37,107)(10,108,38,101)(11,102,39,109)(12,110,40,103)(13,104,41,111)(14,112,42,105)(22,69,31,62)(23,63,32,70)(24,57,33,64)(25,65,34,58)(26,59,35,66)(27,67,29,60)(28,61,30,68)(43,78,50,71)(44,72,51,79)(45,80,52,73)(46,74,53,81)(47,82,54,75)(48,76,55,83)(49,84,56,77), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,30)(2,29)(3,35)(4,34)(5,33)(6,32)(7,31)(8,54)(9,53)(10,52)(11,51)(12,50)(13,56)(14,55)(15,24)(16,23)(17,22)(18,28)(19,27)(20,26)(21,25)(36,47)(37,46)(38,45)(39,44)(40,43)(41,49)(42,48)(57,66)(58,65)(59,64)(60,63)(61,62)(67,70)(68,69)(71,78)(72,77)(73,76)(74,75)(79,84)(80,83)(81,82)(85,90)(86,89)(87,88)(91,98)(92,97)(93,96)(94,95)(99,100)(101,112)(102,111)(103,110)(104,109)(105,108)(106,107) );

G=PermutationGroup([[(1,100,22,82),(2,108,23,76),(3,102,24,84),(4,110,25,78),(5,104,26,72),(6,112,27,80),(7,106,28,74),(8,87,46,68),(9,95,47,62),(10,89,48,70),(11,97,49,64),(12,91,43,58),(13,85,44,66),(14,93,45,60),(15,111,35,79),(16,105,29,73),(17,99,30,81),(18,107,31,75),(19,101,32,83),(20,109,33,77),(21,103,34,71),(36,94,53,61),(37,88,54,69),(38,96,55,63),(39,90,56,57),(40,98,50,65),(41,92,51,59),(42,86,52,67)], [(1,88,18,95),(2,96,19,89),(3,90,20,97),(4,98,21,91),(5,92,15,85),(6,86,16,93),(7,94,17,87),(8,106,36,99),(9,100,37,107),(10,108,38,101),(11,102,39,109),(12,110,40,103),(13,104,41,111),(14,112,42,105),(22,69,31,62),(23,63,32,70),(24,57,33,64),(25,65,34,58),(26,59,35,66),(27,67,29,60),(28,61,30,68),(43,78,50,71),(44,72,51,79),(45,80,52,73),(46,74,53,81),(47,82,54,75),(48,76,55,83),(49,84,56,77)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35),(36,37,38,39,40,41,42),(43,44,45,46,47,48,49),(50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98),(99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,30),(2,29),(3,35),(4,34),(5,33),(6,32),(7,31),(8,54),(9,53),(10,52),(11,51),(12,50),(13,56),(14,55),(15,24),(16,23),(17,22),(18,28),(19,27),(20,26),(21,25),(36,47),(37,46),(38,45),(39,44),(40,43),(41,49),(42,48),(57,66),(58,65),(59,64),(60,63),(61,62),(67,70),(68,69),(71,78),(72,77),(73,76),(74,75),(79,84),(80,83),(81,82),(85,90),(86,89),(87,88),(91,98),(92,97),(93,96),(94,95),(99,100),(101,112),(102,111),(103,110),(104,109),(105,108),(106,107)]])

70 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I2J2K4A4B4C4D4E4F4G4H4I4J4K4L4M4N4O4P7A7B7C14A···14I14J···14O14P14Q14R28A···28L28M···28U
order122222222222444444444444444477714···1414···1414141428···2828···28
size111122414141414282222444777714142828282222···24···48884···48···8

70 irreducible representations

dim111111111111222222244
type+++++++++++++++++++
imageC1C2C2C2C2C2C2C2C2C2C2C2D4D7C4○D4D14D14D14D14D4×D7D7×C4○D4
kernelC4⋊C428D14C23.11D14Dic74D4C22⋊D28D14⋊D4D28⋊C4D14⋊Q8C23.23D14C23⋊D14C7×C22.D4D7×C22×C4C2×D42D7C2×Dic7C22.D4D14C22⋊C4C4⋊C4C22×C4C2×D4C22C2
# reps1121222111114389633612

Matrix representation of C4⋊C428D14 in GL6(𝔽29)

12170000
0170000
001000
000100
000017
0000828
,
2810000
2710000
001000
000100
000017
0000028
,
100000
2280000
0031000
0026000
000010
000001
,
100000
2280000
001000
00202800
0000280
0000211

G:=sub<GL(6,GF(29))| [12,0,0,0,0,0,17,17,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,8,0,0,0,0,7,28],[28,27,0,0,0,0,1,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,7,28],[1,2,0,0,0,0,0,28,0,0,0,0,0,0,3,26,0,0,0,0,10,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,2,0,0,0,0,0,28,0,0,0,0,0,0,1,20,0,0,0,0,0,28,0,0,0,0,0,0,28,21,0,0,0,0,0,1] >;

C4⋊C428D14 in GAP, Magma, Sage, TeX

C_4\rtimes C_4\rtimes_{28}D_{14}
% in TeX

G:=Group("C4:C4:28D14");
// GroupNames label

G:=SmallGroup(448,1109);
// by ID

G=gap.SmallGroup(448,1109);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,100,1123,346,297,18822]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^14=d^2=1,b*a*b^-1=d*a*d=a^-1,c*a*c^-1=a*b^2,c*b*c^-1=b^-1,d*b*d=a^2*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽