extension | φ:Q→Out N | d | ρ | Label | ID |
(C2×C3⋊S3)⋊1D4 = Dic3⋊3D12 | φ: D4/C2 → C22 ⊆ Out C2×C3⋊S3 | 48 | | (C2xC3:S3):1D4 | 288,558 |
(C2×C3⋊S3)⋊2D4 = D6⋊4D12 | φ: D4/C2 → C22 ⊆ Out C2×C3⋊S3 | 48 | | (C2xC3:S3):2D4 | 288,570 |
(C2×C3⋊S3)⋊3D4 = D6⋊5D12 | φ: D4/C2 → C22 ⊆ Out C2×C3⋊S3 | 48 | | (C2xC3:S3):3D4 | 288,571 |
(C2×C3⋊S3)⋊4D4 = C62.100C23 | φ: D4/C2 → C22 ⊆ Out C2×C3⋊S3 | 48 | | (C2xC3:S3):4D4 | 288,606 |
(C2×C3⋊S3)⋊5D4 = C62.125C23 | φ: D4/C2 → C22 ⊆ Out C2×C3⋊S3 | 48 | | (C2xC3:S3):5D4 | 288,631 |
(C2×C3⋊S3)⋊6D4 = D6≀C2 | φ: D4/C2 → C22 ⊆ Out C2×C3⋊S3 | 12 | 4+ | (C2xC3:S3):6D4 | 288,889 |
(C2×C3⋊S3)⋊7D4 = C62⋊D4 | φ: D4/C2 → C22 ⊆ Out C2×C3⋊S3 | 24 | 8+ | (C2xC3:S3):7D4 | 288,890 |
(C2×C3⋊S3)⋊8D4 = C22×S3≀C2 | φ: D4/C2 → C22 ⊆ Out C2×C3⋊S3 | 24 | | (C2xC3:S3):8D4 | 288,1031 |
(C2×C3⋊S3)⋊9D4 = C62.82C23 | φ: D4/C4 → C2 ⊆ Out C2×C3⋊S3 | 48 | | (C2xC3:S3):9D4 | 288,560 |
(C2×C3⋊S3)⋊10D4 = C12⋊2D12 | φ: D4/C4 → C2 ⊆ Out C2×C3⋊S3 | 48 | | (C2xC3:S3):10D4 | 288,564 |
(C2×C3⋊S3)⋊11D4 = C62.228C23 | φ: D4/C4 → C2 ⊆ Out C2×C3⋊S3 | 144 | | (C2xC3:S3):11D4 | 288,741 |
(C2×C3⋊S3)⋊12D4 = C12⋊3D12 | φ: D4/C4 → C2 ⊆ Out C2×C3⋊S3 | 144 | | (C2xC3:S3):12D4 | 288,752 |
(C2×C3⋊S3)⋊13D4 = C62.256C23 | φ: D4/C4 → C2 ⊆ Out C2×C3⋊S3 | 144 | | (C2xC3:S3):13D4 | 288,795 |
(C2×C3⋊S3)⋊14D4 = C2×D6⋊D6 | φ: D4/C4 → C2 ⊆ Out C2×C3⋊S3 | 48 | | (C2xC3:S3):14D4 | 288,952 |
(C2×C3⋊S3)⋊15D4 = C62⋊8D4 | φ: D4/C22 → C2 ⊆ Out C2×C3⋊S3 | 24 | | (C2xC3:S3):15D4 | 288,629 |
(C2×C3⋊S3)⋊16D4 = C62⋊12D4 | φ: D4/C22 → C2 ⊆ Out C2×C3⋊S3 | 72 | | (C2xC3:S3):16D4 | 288,739 |
(C2×C3⋊S3)⋊17D4 = C62⋊13D4 | φ: D4/C22 → C2 ⊆ Out C2×C3⋊S3 | 72 | | (C2xC3:S3):17D4 | 288,794 |
(C2×C3⋊S3)⋊18D4 = C2×Dic3⋊D6 | φ: D4/C22 → C2 ⊆ Out C2×C3⋊S3 | 24 | | (C2xC3:S3):18D4 | 288,977 |
extension | φ:Q→Out N | d | ρ | Label | ID |
(C2×C3⋊S3).1D4 = C2.AΓL1(𝔽9) | φ: D4/C1 → D4 ⊆ Out C2×C3⋊S3 | 24 | 8+ | (C2xC3:S3).1D4 | 288,841 |
(C2×C3⋊S3).2D4 = PSU3(𝔽2)⋊C4 | φ: D4/C1 → D4 ⊆ Out C2×C3⋊S3 | 36 | 8 | (C2xC3:S3).2D4 | 288,842 |
(C2×C3⋊S3).3D4 = F9⋊C4 | φ: D4/C1 → D4 ⊆ Out C2×C3⋊S3 | 36 | 8 | (C2xC3:S3).3D4 | 288,843 |
(C2×C3⋊S3).4D4 = C2×AΓL1(𝔽9) | φ: D4/C1 → D4 ⊆ Out C2×C3⋊S3 | 18 | 8+ | (C2xC3:S3).4D4 | 288,1027 |
(C2×C3⋊S3).5D4 = C3⋊S3.2D8 | φ: D4/C2 → C22 ⊆ Out C2×C3⋊S3 | 24 | 4 | (C2xC3:S3).5D4 | 288,377 |
(C2×C3⋊S3).6D4 = C3⋊S3.2Q16 | φ: D4/C2 → C22 ⊆ Out C2×C3⋊S3 | 48 | 4 | (C2xC3:S3).6D4 | 288,378 |
(C2×C3⋊S3).7D4 = C32⋊C4≀C2 | φ: D4/C2 → C22 ⊆ Out C2×C3⋊S3 | 48 | 4 | (C2xC3:S3).7D4 | 288,379 |
(C2×C3⋊S3).8D4 = C62.D4 | φ: D4/C2 → C22 ⊆ Out C2×C3⋊S3 | 48 | | (C2xC3:S3).8D4 | 288,385 |
(C2×C3⋊S3).9D4 = C62.2D4 | φ: D4/C2 → C22 ⊆ Out C2×C3⋊S3 | 24 | 4+ | (C2xC3:S3).9D4 | 288,386 |
(C2×C3⋊S3).10D4 = C4.PSU3(𝔽2) | φ: D4/C2 → C22 ⊆ Out C2×C3⋊S3 | 48 | 8 | (C2xC3:S3).10D4 | 288,393 |
(C2×C3⋊S3).11D4 = C4.2PSU3(𝔽2) | φ: D4/C2 → C22 ⊆ Out C2×C3⋊S3 | 48 | 8 | (C2xC3:S3).11D4 | 288,394 |
(C2×C3⋊S3).12D4 = C62.Q8 | φ: D4/C2 → C22 ⊆ Out C2×C3⋊S3 | 48 | | (C2xC3:S3).12D4 | 288,395 |
(C2×C3⋊S3).13D4 = (C6×C12)⋊C4 | φ: D4/C2 → C22 ⊆ Out C2×C3⋊S3 | 24 | 4+ | (C2xC3:S3).13D4 | 288,422 |
(C2×C3⋊S3).14D4 = C32⋊6C4≀C2 | φ: D4/C2 → C22 ⊆ Out C2×C3⋊S3 | 48 | 8- | (C2xC3:S3).14D4 | 288,431 |
(C2×C3⋊S3).15D4 = C32⋊7C4≀C2 | φ: D4/C2 → C22 ⊆ Out C2×C3⋊S3 | 48 | 8+ | (C2xC3:S3).15D4 | 288,433 |
(C2×C3⋊S3).16D4 = (C2×C62)⋊C4 | φ: D4/C2 → C22 ⊆ Out C2×C3⋊S3 | 24 | 4 | (C2xC3:S3).16D4 | 288,434 |
(C2×C3⋊S3).17D4 = C24⋊6D6 | φ: D4/C2 → C22 ⊆ Out C2×C3⋊S3 | 48 | 4 | (C2xC3:S3).17D4 | 288,446 |
(C2×C3⋊S3).18D4 = D12.4D6 | φ: D4/C2 → C22 ⊆ Out C2×C3⋊S3 | 48 | 4 | (C2xC3:S3).18D4 | 288,459 |
(C2×C3⋊S3).19D4 = C62.24C23 | φ: D4/C2 → C22 ⊆ Out C2×C3⋊S3 | 48 | | (C2xC3:S3).19D4 | 288,502 |
(C2×C3⋊S3).20D4 = C62.67C23 | φ: D4/C2 → C22 ⊆ Out C2×C3⋊S3 | 48 | | (C2xC3:S3).20D4 | 288,545 |
(C2×C3⋊S3).21D4 = D12.D6 | φ: D4/C2 → C22 ⊆ Out C2×C3⋊S3 | 48 | 8- | (C2xC3:S3).21D4 | 288,575 |
(C2×C3⋊S3).22D4 = Dic6.D6 | φ: D4/C2 → C22 ⊆ Out C2×C3⋊S3 | 48 | 8- | (C2xC3:S3).22D4 | 288,579 |
(C2×C3⋊S3).23D4 = D12.8D6 | φ: D4/C2 → C22 ⊆ Out C2×C3⋊S3 | 48 | 8- | (C2xC3:S3).23D4 | 288,584 |
(C2×C3⋊S3).24D4 = D12.10D6 | φ: D4/C2 → C22 ⊆ Out C2×C3⋊S3 | 48 | 8+ | (C2xC3:S3).24D4 | 288,589 |
(C2×C3⋊S3).25D4 = Dic6.10D6 | φ: D4/C2 → C22 ⊆ Out C2×C3⋊S3 | 48 | 8+ | (C2xC3:S3).25D4 | 288,593 |
(C2×C3⋊S3).26D4 = D12.14D6 | φ: D4/C2 → C22 ⊆ Out C2×C3⋊S3 | 48 | 8+ | (C2xC3:S3).26D4 | 288,598 |
(C2×C3⋊S3).27D4 = C62.117C23 | φ: D4/C2 → C22 ⊆ Out C2×C3⋊S3 | 48 | | (C2xC3:S3).27D4 | 288,623 |
(C2×C3⋊S3).28D4 = C32⋊D8⋊5C2 | φ: D4/C2 → C22 ⊆ Out C2×C3⋊S3 | 48 | 4 | (C2xC3:S3).28D4 | 288,871 |
(C2×C3⋊S3).29D4 = C32⋊D8⋊C2 | φ: D4/C2 → C22 ⊆ Out C2×C3⋊S3 | 24 | 4 | (C2xC3:S3).29D4 | 288,872 |
(C2×C3⋊S3).30D4 = C3⋊S3⋊D8 | φ: D4/C2 → C22 ⊆ Out C2×C3⋊S3 | 24 | 8+ | (C2xC3:S3).30D4 | 288,873 |
(C2×C3⋊S3).31D4 = C32⋊Q16⋊C2 | φ: D4/C2 → C22 ⊆ Out C2×C3⋊S3 | 48 | 4 | (C2xC3:S3).31D4 | 288,874 |
(C2×C3⋊S3).32D4 = C3⋊S3⋊2SD16 | φ: D4/C2 → C22 ⊆ Out C2×C3⋊S3 | 24 | 8+ | (C2xC3:S3).32D4 | 288,875 |
(C2×C3⋊S3).33D4 = C3⋊S3⋊Q16 | φ: D4/C2 → C22 ⊆ Out C2×C3⋊S3 | 48 | 8- | (C2xC3:S3).33D4 | 288,876 |
(C2×C3⋊S3).34D4 = C2×S32⋊C4 | φ: D4/C2 → C22 ⊆ Out C2×C3⋊S3 | 24 | | (C2xC3:S3).34D4 | 288,880 |
(C2×C3⋊S3).35D4 = C62.9D4 | φ: D4/C2 → C22 ⊆ Out C2×C3⋊S3 | 24 | 4 | (C2xC3:S3).35D4 | 288,881 |
(C2×C3⋊S3).36D4 = C2×C3⋊S3.Q8 | φ: D4/C2 → C22 ⊆ Out C2×C3⋊S3 | 48 | | (C2xC3:S3).36D4 | 288,882 |
(C2×C3⋊S3).37D4 = C2×C2.PSU3(𝔽2) | φ: D4/C2 → C22 ⊆ Out C2×C3⋊S3 | 48 | | (C2xC3:S3).37D4 | 288,894 |
(C2×C3⋊S3).38D4 = C8⋊(C32⋊C4) | φ: D4/C4 → C2 ⊆ Out C2×C3⋊S3 | 48 | 4 | (C2xC3:S3).38D4 | 288,416 |
(C2×C3⋊S3).39D4 = C3⋊S3.4D8 | φ: D4/C4 → C2 ⊆ Out C2×C3⋊S3 | 48 | 4 | (C2xC3:S3).39D4 | 288,417 |
(C2×C3⋊S3).40D4 = C24⋊9D6 | φ: D4/C4 → C2 ⊆ Out C2×C3⋊S3 | 48 | 4 | (C2xC3:S3).40D4 | 288,444 |
(C2×C3⋊S3).41D4 = C24⋊4D6 | φ: D4/C4 → C2 ⊆ Out C2×C3⋊S3 | 48 | 4 | (C2xC3:S3).41D4 | 288,445 |
(C2×C3⋊S3).42D4 = C24.23D6 | φ: D4/C4 → C2 ⊆ Out C2×C3⋊S3 | 48 | 4 | (C2xC3:S3).42D4 | 288,450 |
(C2×C3⋊S3).43D4 = D12.2D6 | φ: D4/C4 → C2 ⊆ Out C2×C3⋊S3 | 48 | 4 | (C2xC3:S3).43D4 | 288,457 |
(C2×C3⋊S3).44D4 = D24⋊5S3 | φ: D4/C4 → C2 ⊆ Out C2×C3⋊S3 | 48 | 4 | (C2xC3:S3).44D4 | 288,458 |
(C2×C3⋊S3).45D4 = C62.70C23 | φ: D4/C4 → C2 ⊆ Out C2×C3⋊S3 | 48 | | (C2xC3:S3).45D4 | 288,548 |
(C2×C3⋊S3).46D4 = C24.26D6 | φ: D4/C4 → C2 ⊆ Out C2×C3⋊S3 | 144 | | (C2xC3:S3).46D4 | 288,769 |
(C2×C3⋊S3).47D4 = C24.40D6 | φ: D4/C4 → C2 ⊆ Out C2×C3⋊S3 | 144 | | (C2xC3:S3).47D4 | 288,773 |
(C2×C3⋊S3).48D4 = C24.28D6 | φ: D4/C4 → C2 ⊆ Out C2×C3⋊S3 | 144 | | (C2xC3:S3).48D4 | 288,776 |
(C2×C3⋊S3).49D4 = C2×C4⋊(C32⋊C4) | φ: D4/C4 → C2 ⊆ Out C2×C3⋊S3 | 48 | | (C2xC3:S3).49D4 | 288,933 |
(C2×C3⋊S3).50D4 = (C6×C12)⋊2C4 | φ: D4/C22 → C2 ⊆ Out C2×C3⋊S3 | 48 | | (C2xC3:S3).50D4 | 288,429 |
(C2×C3⋊S3).51D4 = C3⋊S3.5D8 | φ: D4/C22 → C2 ⊆ Out C2×C3⋊S3 | 24 | 8+ | (C2xC3:S3).51D4 | 288,430 |
(C2×C3⋊S3).52D4 = C3⋊S3.5Q16 | φ: D4/C22 → C2 ⊆ Out C2×C3⋊S3 | 48 | 8- | (C2xC3:S3).52D4 | 288,432 |
(C2×C3⋊S3).53D4 = C62.23C23 | φ: D4/C22 → C2 ⊆ Out C2×C3⋊S3 | 48 | | (C2xC3:S3).53D4 | 288,501 |
(C2×C3⋊S3).54D4 = C62.53C23 | φ: D4/C22 → C2 ⊆ Out C2×C3⋊S3 | 48 | | (C2xC3:S3).54D4 | 288,531 |
(C2×C3⋊S3).55D4 = C62.91C23 | φ: D4/C22 → C2 ⊆ Out C2×C3⋊S3 | 48 | | (C2xC3:S3).55D4 | 288,569 |
(C2×C3⋊S3).56D4 = D12⋊D6 | φ: D4/C22 → C2 ⊆ Out C2×C3⋊S3 | 24 | 8+ | (C2xC3:S3).56D4 | 288,574 |
(C2×C3⋊S3).57D4 = Dic6⋊D6 | φ: D4/C22 → C2 ⊆ Out C2×C3⋊S3 | 24 | 8+ | (C2xC3:S3).57D4 | 288,578 |
(C2×C3⋊S3).58D4 = D12⋊5D6 | φ: D4/C22 → C2 ⊆ Out C2×C3⋊S3 | 24 | 8+ | (C2xC3:S3).58D4 | 288,585 |
(C2×C3⋊S3).59D4 = D12.9D6 | φ: D4/C22 → C2 ⊆ Out C2×C3⋊S3 | 48 | 8- | (C2xC3:S3).59D4 | 288,588 |
(C2×C3⋊S3).60D4 = Dic6.9D6 | φ: D4/C22 → C2 ⊆ Out C2×C3⋊S3 | 48 | 8- | (C2xC3:S3).60D4 | 288,592 |
(C2×C3⋊S3).61D4 = D12.15D6 | φ: D4/C22 → C2 ⊆ Out C2×C3⋊S3 | 48 | 8- | (C2xC3:S3).61D4 | 288,599 |
(C2×C3⋊S3).62D4 = C62.116C23 | φ: D4/C22 → C2 ⊆ Out C2×C3⋊S3 | 24 | | (C2xC3:S3).62D4 | 288,622 |
(C2×C3⋊S3).63D4 = C62.227C23 | φ: D4/C22 → C2 ⊆ Out C2×C3⋊S3 | 144 | | (C2xC3:S3).63D4 | 288,740 |
(C2×C3⋊S3).64D4 = C62.238C23 | φ: D4/C22 → C2 ⊆ Out C2×C3⋊S3 | 144 | | (C2xC3:S3).64D4 | 288,751 |
(C2×C3⋊S3).65D4 = C24⋊8D6 | φ: D4/C22 → C2 ⊆ Out C2×C3⋊S3 | 72 | | (C2xC3:S3).65D4 | 288,768 |
(C2×C3⋊S3).66D4 = C24⋊7D6 | φ: D4/C22 → C2 ⊆ Out C2×C3⋊S3 | 72 | | (C2xC3:S3).66D4 | 288,771 |
(C2×C3⋊S3).67D4 = C24.32D6 | φ: D4/C22 → C2 ⊆ Out C2×C3⋊S3 | 144 | | (C2xC3:S3).67D4 | 288,772 |
(C2×C3⋊S3).68D4 = C24.35D6 | φ: D4/C22 → C2 ⊆ Out C2×C3⋊S3 | 144 | | (C2xC3:S3).68D4 | 288,775 |
(C2×C3⋊S3).69D4 = C2×C62⋊C4 | φ: D4/C22 → C2 ⊆ Out C2×C3⋊S3 | 24 | | (C2xC3:S3).69D4 | 288,941 |
(C2×C3⋊S3).70D4 = C22⋊C4×C3⋊S3 | φ: trivial image | 72 | | (C2xC3:S3).70D4 | 288,737 |
(C2×C3⋊S3).71D4 = C4⋊C4×C3⋊S3 | φ: trivial image | 144 | | (C2xC3:S3).71D4 | 288,748 |
(C2×C3⋊S3).72D4 = D8×C3⋊S3 | φ: trivial image | 72 | | (C2xC3:S3).72D4 | 288,767 |
(C2×C3⋊S3).73D4 = SD16×C3⋊S3 | φ: trivial image | 72 | | (C2xC3:S3).73D4 | 288,770 |
(C2×C3⋊S3).74D4 = Q16×C3⋊S3 | φ: trivial image | 144 | | (C2xC3:S3).74D4 | 288,774 |