Extensions 1→N→G→Q→1 with N=C2×C3⋊S3 and Q=D4

Direct product G=N×Q with N=C2×C3⋊S3 and Q=D4
dρLabelID
C2×D4×C3⋊S372C2xD4xC3:S3288,1007

Semidirect products G=N:Q with N=C2×C3⋊S3 and Q=D4
extensionφ:Q→Out NdρLabelID
(C2×C3⋊S3)⋊1D4 = Dic33D12φ: D4/C2C22 ⊆ Out C2×C3⋊S348(C2xC3:S3):1D4288,558
(C2×C3⋊S3)⋊2D4 = D64D12φ: D4/C2C22 ⊆ Out C2×C3⋊S348(C2xC3:S3):2D4288,570
(C2×C3⋊S3)⋊3D4 = D65D12φ: D4/C2C22 ⊆ Out C2×C3⋊S348(C2xC3:S3):3D4288,571
(C2×C3⋊S3)⋊4D4 = C62.100C23φ: D4/C2C22 ⊆ Out C2×C3⋊S348(C2xC3:S3):4D4288,606
(C2×C3⋊S3)⋊5D4 = C62.125C23φ: D4/C2C22 ⊆ Out C2×C3⋊S348(C2xC3:S3):5D4288,631
(C2×C3⋊S3)⋊6D4 = D6≀C2φ: D4/C2C22 ⊆ Out C2×C3⋊S3124+(C2xC3:S3):6D4288,889
(C2×C3⋊S3)⋊7D4 = C62⋊D4φ: D4/C2C22 ⊆ Out C2×C3⋊S3248+(C2xC3:S3):7D4288,890
(C2×C3⋊S3)⋊8D4 = C22×S3≀C2φ: D4/C2C22 ⊆ Out C2×C3⋊S324(C2xC3:S3):8D4288,1031
(C2×C3⋊S3)⋊9D4 = C62.82C23φ: D4/C4C2 ⊆ Out C2×C3⋊S348(C2xC3:S3):9D4288,560
(C2×C3⋊S3)⋊10D4 = C122D12φ: D4/C4C2 ⊆ Out C2×C3⋊S348(C2xC3:S3):10D4288,564
(C2×C3⋊S3)⋊11D4 = C62.228C23φ: D4/C4C2 ⊆ Out C2×C3⋊S3144(C2xC3:S3):11D4288,741
(C2×C3⋊S3)⋊12D4 = C123D12φ: D4/C4C2 ⊆ Out C2×C3⋊S3144(C2xC3:S3):12D4288,752
(C2×C3⋊S3)⋊13D4 = C62.256C23φ: D4/C4C2 ⊆ Out C2×C3⋊S3144(C2xC3:S3):13D4288,795
(C2×C3⋊S3)⋊14D4 = C2×D6⋊D6φ: D4/C4C2 ⊆ Out C2×C3⋊S348(C2xC3:S3):14D4288,952
(C2×C3⋊S3)⋊15D4 = C628D4φ: D4/C22C2 ⊆ Out C2×C3⋊S324(C2xC3:S3):15D4288,629
(C2×C3⋊S3)⋊16D4 = C6212D4φ: D4/C22C2 ⊆ Out C2×C3⋊S372(C2xC3:S3):16D4288,739
(C2×C3⋊S3)⋊17D4 = C6213D4φ: D4/C22C2 ⊆ Out C2×C3⋊S372(C2xC3:S3):17D4288,794
(C2×C3⋊S3)⋊18D4 = C2×Dic3⋊D6φ: D4/C22C2 ⊆ Out C2×C3⋊S324(C2xC3:S3):18D4288,977

Non-split extensions G=N.Q with N=C2×C3⋊S3 and Q=D4
extensionφ:Q→Out NdρLabelID
(C2×C3⋊S3).1D4 = C2.AΓL1(𝔽9)φ: D4/C1D4 ⊆ Out C2×C3⋊S3248+(C2xC3:S3).1D4288,841
(C2×C3⋊S3).2D4 = PSU3(𝔽2)⋊C4φ: D4/C1D4 ⊆ Out C2×C3⋊S3368(C2xC3:S3).2D4288,842
(C2×C3⋊S3).3D4 = F9⋊C4φ: D4/C1D4 ⊆ Out C2×C3⋊S3368(C2xC3:S3).3D4288,843
(C2×C3⋊S3).4D4 = C2×AΓL1(𝔽9)φ: D4/C1D4 ⊆ Out C2×C3⋊S3188+(C2xC3:S3).4D4288,1027
(C2×C3⋊S3).5D4 = C3⋊S3.2D8φ: D4/C2C22 ⊆ Out C2×C3⋊S3244(C2xC3:S3).5D4288,377
(C2×C3⋊S3).6D4 = C3⋊S3.2Q16φ: D4/C2C22 ⊆ Out C2×C3⋊S3484(C2xC3:S3).6D4288,378
(C2×C3⋊S3).7D4 = C32⋊C4≀C2φ: D4/C2C22 ⊆ Out C2×C3⋊S3484(C2xC3:S3).7D4288,379
(C2×C3⋊S3).8D4 = C62.D4φ: D4/C2C22 ⊆ Out C2×C3⋊S348(C2xC3:S3).8D4288,385
(C2×C3⋊S3).9D4 = C62.2D4φ: D4/C2C22 ⊆ Out C2×C3⋊S3244+(C2xC3:S3).9D4288,386
(C2×C3⋊S3).10D4 = C4.PSU3(𝔽2)φ: D4/C2C22 ⊆ Out C2×C3⋊S3488(C2xC3:S3).10D4288,393
(C2×C3⋊S3).11D4 = C4.2PSU3(𝔽2)φ: D4/C2C22 ⊆ Out C2×C3⋊S3488(C2xC3:S3).11D4288,394
(C2×C3⋊S3).12D4 = C62.Q8φ: D4/C2C22 ⊆ Out C2×C3⋊S348(C2xC3:S3).12D4288,395
(C2×C3⋊S3).13D4 = (C6×C12)⋊C4φ: D4/C2C22 ⊆ Out C2×C3⋊S3244+(C2xC3:S3).13D4288,422
(C2×C3⋊S3).14D4 = C326C4≀C2φ: D4/C2C22 ⊆ Out C2×C3⋊S3488-(C2xC3:S3).14D4288,431
(C2×C3⋊S3).15D4 = C327C4≀C2φ: D4/C2C22 ⊆ Out C2×C3⋊S3488+(C2xC3:S3).15D4288,433
(C2×C3⋊S3).16D4 = (C2×C62)⋊C4φ: D4/C2C22 ⊆ Out C2×C3⋊S3244(C2xC3:S3).16D4288,434
(C2×C3⋊S3).17D4 = C246D6φ: D4/C2C22 ⊆ Out C2×C3⋊S3484(C2xC3:S3).17D4288,446
(C2×C3⋊S3).18D4 = D12.4D6φ: D4/C2C22 ⊆ Out C2×C3⋊S3484(C2xC3:S3).18D4288,459
(C2×C3⋊S3).19D4 = C62.24C23φ: D4/C2C22 ⊆ Out C2×C3⋊S348(C2xC3:S3).19D4288,502
(C2×C3⋊S3).20D4 = C62.67C23φ: D4/C2C22 ⊆ Out C2×C3⋊S348(C2xC3:S3).20D4288,545
(C2×C3⋊S3).21D4 = D12.D6φ: D4/C2C22 ⊆ Out C2×C3⋊S3488-(C2xC3:S3).21D4288,575
(C2×C3⋊S3).22D4 = Dic6.D6φ: D4/C2C22 ⊆ Out C2×C3⋊S3488-(C2xC3:S3).22D4288,579
(C2×C3⋊S3).23D4 = D12.8D6φ: D4/C2C22 ⊆ Out C2×C3⋊S3488-(C2xC3:S3).23D4288,584
(C2×C3⋊S3).24D4 = D12.10D6φ: D4/C2C22 ⊆ Out C2×C3⋊S3488+(C2xC3:S3).24D4288,589
(C2×C3⋊S3).25D4 = Dic6.10D6φ: D4/C2C22 ⊆ Out C2×C3⋊S3488+(C2xC3:S3).25D4288,593
(C2×C3⋊S3).26D4 = D12.14D6φ: D4/C2C22 ⊆ Out C2×C3⋊S3488+(C2xC3:S3).26D4288,598
(C2×C3⋊S3).27D4 = C62.117C23φ: D4/C2C22 ⊆ Out C2×C3⋊S348(C2xC3:S3).27D4288,623
(C2×C3⋊S3).28D4 = C32⋊D85C2φ: D4/C2C22 ⊆ Out C2×C3⋊S3484(C2xC3:S3).28D4288,871
(C2×C3⋊S3).29D4 = C32⋊D8⋊C2φ: D4/C2C22 ⊆ Out C2×C3⋊S3244(C2xC3:S3).29D4288,872
(C2×C3⋊S3).30D4 = C3⋊S3⋊D8φ: D4/C2C22 ⊆ Out C2×C3⋊S3248+(C2xC3:S3).30D4288,873
(C2×C3⋊S3).31D4 = C32⋊Q16⋊C2φ: D4/C2C22 ⊆ Out C2×C3⋊S3484(C2xC3:S3).31D4288,874
(C2×C3⋊S3).32D4 = C3⋊S32SD16φ: D4/C2C22 ⊆ Out C2×C3⋊S3248+(C2xC3:S3).32D4288,875
(C2×C3⋊S3).33D4 = C3⋊S3⋊Q16φ: D4/C2C22 ⊆ Out C2×C3⋊S3488-(C2xC3:S3).33D4288,876
(C2×C3⋊S3).34D4 = C2×S32⋊C4φ: D4/C2C22 ⊆ Out C2×C3⋊S324(C2xC3:S3).34D4288,880
(C2×C3⋊S3).35D4 = C62.9D4φ: D4/C2C22 ⊆ Out C2×C3⋊S3244(C2xC3:S3).35D4288,881
(C2×C3⋊S3).36D4 = C2×C3⋊S3.Q8φ: D4/C2C22 ⊆ Out C2×C3⋊S348(C2xC3:S3).36D4288,882
(C2×C3⋊S3).37D4 = C2×C2.PSU3(𝔽2)φ: D4/C2C22 ⊆ Out C2×C3⋊S348(C2xC3:S3).37D4288,894
(C2×C3⋊S3).38D4 = C8⋊(C32⋊C4)φ: D4/C4C2 ⊆ Out C2×C3⋊S3484(C2xC3:S3).38D4288,416
(C2×C3⋊S3).39D4 = C3⋊S3.4D8φ: D4/C4C2 ⊆ Out C2×C3⋊S3484(C2xC3:S3).39D4288,417
(C2×C3⋊S3).40D4 = C249D6φ: D4/C4C2 ⊆ Out C2×C3⋊S3484(C2xC3:S3).40D4288,444
(C2×C3⋊S3).41D4 = C244D6φ: D4/C4C2 ⊆ Out C2×C3⋊S3484(C2xC3:S3).41D4288,445
(C2×C3⋊S3).42D4 = C24.23D6φ: D4/C4C2 ⊆ Out C2×C3⋊S3484(C2xC3:S3).42D4288,450
(C2×C3⋊S3).43D4 = D12.2D6φ: D4/C4C2 ⊆ Out C2×C3⋊S3484(C2xC3:S3).43D4288,457
(C2×C3⋊S3).44D4 = D245S3φ: D4/C4C2 ⊆ Out C2×C3⋊S3484(C2xC3:S3).44D4288,458
(C2×C3⋊S3).45D4 = C62.70C23φ: D4/C4C2 ⊆ Out C2×C3⋊S348(C2xC3:S3).45D4288,548
(C2×C3⋊S3).46D4 = C24.26D6φ: D4/C4C2 ⊆ Out C2×C3⋊S3144(C2xC3:S3).46D4288,769
(C2×C3⋊S3).47D4 = C24.40D6φ: D4/C4C2 ⊆ Out C2×C3⋊S3144(C2xC3:S3).47D4288,773
(C2×C3⋊S3).48D4 = C24.28D6φ: D4/C4C2 ⊆ Out C2×C3⋊S3144(C2xC3:S3).48D4288,776
(C2×C3⋊S3).49D4 = C2×C4⋊(C32⋊C4)φ: D4/C4C2 ⊆ Out C2×C3⋊S348(C2xC3:S3).49D4288,933
(C2×C3⋊S3).50D4 = (C6×C12)⋊2C4φ: D4/C22C2 ⊆ Out C2×C3⋊S348(C2xC3:S3).50D4288,429
(C2×C3⋊S3).51D4 = C3⋊S3.5D8φ: D4/C22C2 ⊆ Out C2×C3⋊S3248+(C2xC3:S3).51D4288,430
(C2×C3⋊S3).52D4 = C3⋊S3.5Q16φ: D4/C22C2 ⊆ Out C2×C3⋊S3488-(C2xC3:S3).52D4288,432
(C2×C3⋊S3).53D4 = C62.23C23φ: D4/C22C2 ⊆ Out C2×C3⋊S348(C2xC3:S3).53D4288,501
(C2×C3⋊S3).54D4 = C62.53C23φ: D4/C22C2 ⊆ Out C2×C3⋊S348(C2xC3:S3).54D4288,531
(C2×C3⋊S3).55D4 = C62.91C23φ: D4/C22C2 ⊆ Out C2×C3⋊S348(C2xC3:S3).55D4288,569
(C2×C3⋊S3).56D4 = D12⋊D6φ: D4/C22C2 ⊆ Out C2×C3⋊S3248+(C2xC3:S3).56D4288,574
(C2×C3⋊S3).57D4 = Dic6⋊D6φ: D4/C22C2 ⊆ Out C2×C3⋊S3248+(C2xC3:S3).57D4288,578
(C2×C3⋊S3).58D4 = D125D6φ: D4/C22C2 ⊆ Out C2×C3⋊S3248+(C2xC3:S3).58D4288,585
(C2×C3⋊S3).59D4 = D12.9D6φ: D4/C22C2 ⊆ Out C2×C3⋊S3488-(C2xC3:S3).59D4288,588
(C2×C3⋊S3).60D4 = Dic6.9D6φ: D4/C22C2 ⊆ Out C2×C3⋊S3488-(C2xC3:S3).60D4288,592
(C2×C3⋊S3).61D4 = D12.15D6φ: D4/C22C2 ⊆ Out C2×C3⋊S3488-(C2xC3:S3).61D4288,599
(C2×C3⋊S3).62D4 = C62.116C23φ: D4/C22C2 ⊆ Out C2×C3⋊S324(C2xC3:S3).62D4288,622
(C2×C3⋊S3).63D4 = C62.227C23φ: D4/C22C2 ⊆ Out C2×C3⋊S3144(C2xC3:S3).63D4288,740
(C2×C3⋊S3).64D4 = C62.238C23φ: D4/C22C2 ⊆ Out C2×C3⋊S3144(C2xC3:S3).64D4288,751
(C2×C3⋊S3).65D4 = C248D6φ: D4/C22C2 ⊆ Out C2×C3⋊S372(C2xC3:S3).65D4288,768
(C2×C3⋊S3).66D4 = C247D6φ: D4/C22C2 ⊆ Out C2×C3⋊S372(C2xC3:S3).66D4288,771
(C2×C3⋊S3).67D4 = C24.32D6φ: D4/C22C2 ⊆ Out C2×C3⋊S3144(C2xC3:S3).67D4288,772
(C2×C3⋊S3).68D4 = C24.35D6φ: D4/C22C2 ⊆ Out C2×C3⋊S3144(C2xC3:S3).68D4288,775
(C2×C3⋊S3).69D4 = C2×C62⋊C4φ: D4/C22C2 ⊆ Out C2×C3⋊S324(C2xC3:S3).69D4288,941
(C2×C3⋊S3).70D4 = C22⋊C4×C3⋊S3φ: trivial image72(C2xC3:S3).70D4288,737
(C2×C3⋊S3).71D4 = C4⋊C4×C3⋊S3φ: trivial image144(C2xC3:S3).71D4288,748
(C2×C3⋊S3).72D4 = D8×C3⋊S3φ: trivial image72(C2xC3:S3).72D4288,767
(C2×C3⋊S3).73D4 = SD16×C3⋊S3φ: trivial image72(C2xC3:S3).73D4288,770
(C2×C3⋊S3).74D4 = Q16×C3⋊S3φ: trivial image144(C2xC3:S3).74D4288,774

׿
×
𝔽