Generators in S
48
(1 17)(2 18)(3 19)(4 20)(5 28)(6 25)(7 26)(8 27)(9 21)(10 22)(11 23)(12 24)(13 34)(14 35)(15 36)(16 33)(29 43)(30 44)(31 41)(32 42)(37 48)(38 45)(39 46)(40 47)
(1 5 9)(2 6 10)(3 7 11)(4 8 12)(13 43 47)(14 48 44)(15 41 45)(16 46 42)(17 28 21)(18 25 22)(19 26 23)(20 27 24)(29 40 34)(30 35 37)(31 38 36)(32 33 39)
(1 9 5)(2 10 6)(3 11 7)(4 12 8)(13 43 47)(14 48 44)(15 41 45)(16 46 42)(17 21 28)(18 22 25)(19 23 26)(20 24 27)(29 40 34)(30 35 37)(31 38 36)(32 33 39)
(5 9)(6 10)(7 11)(8 12)(13 47)(14 48)(15 45)(16 46)(21 28)(22 25)(23 26)(24 27)(33 39)(34 40)(35 37)(36 38)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)
(1 41 3 43)(2 44 4 42)(5 45 7 47)(6 14 8 16)(9 15 11 13)(10 48 12 46)(17 31 19 29)(18 30 20 32)(21 36 23 34)(22 37 24 39)(25 35 27 33)(26 40 28 38)
G:=sub<Sym(48)| (1,17)(2,18)(3,19)(4,20)(5,28)(6,25)(7,26)(8,27)(9,21)(10,22)(11,23)(12,24)(13,34)(14,35)(15,36)(16,33)(29,43)(30,44)(31,41)(32,42)(37,48)(38,45)(39,46)(40,47), (1,5,9)(2,6,10)(3,7,11)(4,8,12)(13,43,47)(14,48,44)(15,41,45)(16,46,42)(17,28,21)(18,25,22)(19,26,23)(20,27,24)(29,40,34)(30,35,37)(31,38,36)(32,33,39), (1,9,5)(2,10,6)(3,11,7)(4,12,8)(13,43,47)(14,48,44)(15,41,45)(16,46,42)(17,21,28)(18,22,25)(19,23,26)(20,24,27)(29,40,34)(30,35,37)(31,38,36)(32,33,39), (5,9)(6,10)(7,11)(8,12)(13,47)(14,48)(15,45)(16,46)(21,28)(22,25)(23,26)(24,27)(33,39)(34,40)(35,37)(36,38), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48), (1,41,3,43)(2,44,4,42)(5,45,7,47)(6,14,8,16)(9,15,11,13)(10,48,12,46)(17,31,19,29)(18,30,20,32)(21,36,23,34)(22,37,24,39)(25,35,27,33)(26,40,28,38)>;
G:=Group( (1,17)(2,18)(3,19)(4,20)(5,28)(6,25)(7,26)(8,27)(9,21)(10,22)(11,23)(12,24)(13,34)(14,35)(15,36)(16,33)(29,43)(30,44)(31,41)(32,42)(37,48)(38,45)(39,46)(40,47), (1,5,9)(2,6,10)(3,7,11)(4,8,12)(13,43,47)(14,48,44)(15,41,45)(16,46,42)(17,28,21)(18,25,22)(19,26,23)(20,27,24)(29,40,34)(30,35,37)(31,38,36)(32,33,39), (1,9,5)(2,10,6)(3,11,7)(4,12,8)(13,43,47)(14,48,44)(15,41,45)(16,46,42)(17,21,28)(18,22,25)(19,23,26)(20,24,27)(29,40,34)(30,35,37)(31,38,36)(32,33,39), (5,9)(6,10)(7,11)(8,12)(13,47)(14,48)(15,45)(16,46)(21,28)(22,25)(23,26)(24,27)(33,39)(34,40)(35,37)(36,38), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48), (1,41,3,43)(2,44,4,42)(5,45,7,47)(6,14,8,16)(9,15,11,13)(10,48,12,46)(17,31,19,29)(18,30,20,32)(21,36,23,34)(22,37,24,39)(25,35,27,33)(26,40,28,38) );
G=PermutationGroup([[(1,17),(2,18),(3,19),(4,20),(5,28),(6,25),(7,26),(8,27),(9,21),(10,22),(11,23),(12,24),(13,34),(14,35),(15,36),(16,33),(29,43),(30,44),(31,41),(32,42),(37,48),(38,45),(39,46),(40,47)], [(1,5,9),(2,6,10),(3,7,11),(4,8,12),(13,43,47),(14,48,44),(15,41,45),(16,46,42),(17,28,21),(18,25,22),(19,26,23),(20,27,24),(29,40,34),(30,35,37),(31,38,36),(32,33,39)], [(1,9,5),(2,10,6),(3,11,7),(4,12,8),(13,43,47),(14,48,44),(15,41,45),(16,46,42),(17,21,28),(18,22,25),(19,23,26),(20,24,27),(29,40,34),(30,35,37),(31,38,36),(32,33,39)], [(5,9),(6,10),(7,11),(8,12),(13,47),(14,48),(15,45),(16,46),(21,28),(22,25),(23,26),(24,27),(33,39),(34,40),(35,37),(36,38)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48)], [(1,41,3,43),(2,44,4,42),(5,45,7,47),(6,14,8,16),(9,15,11,13),(10,48,12,46),(17,31,19,29),(18,30,20,32),(21,36,23,34),(22,37,24,39),(25,35,27,33),(26,40,28,38)]])
12 | 0 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 0 | 12 |
,
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 1 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 1 |
0 | 0 | 0 | 0 | 12 | 0 |
,
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 1 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 1 |
0 | 0 | 0 | 0 | 12 | 0 |
,
12 | 0 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 |
,
0 | 8 | 0 | 0 | 0 | 0 |
5 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 8 | 0 | 0 | 0 |
0 | 0 | 0 | 8 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 5 |
0 | 0 | 0 | 0 | 5 | 0 |
,
6 | 2 | 0 | 0 | 0 | 0 |
2 | 7 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 0 | 12 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
G:=sub<GL(6,GF(13))| [12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,12,0,0,0,0,1,0,0,0,0,0,0,0,12,12,0,0,0,0,1,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,12,12,0,0,0,0,0,0,12,12,0,0,0,0,1,0],[12,0,0,0,0,0,0,12,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[0,5,0,0,0,0,8,0,0,0,0,0,0,0,8,0,0,0,0,0,0,8,0,0,0,0,0,0,0,5,0,0,0,0,5,0],[6,2,0,0,0,0,2,7,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,12,0,0,0,0,0,0,12,0,0] >;