non-abelian, soluble, monomial
Aliases: C62.7D4, (C3×C6).5D8, (C3×C6).2Q16, C32⋊2C8⋊1C4, C3⋊Dic3.3Q8, C2.2(C32⋊D8), C32⋊2(C2.D8), C22.11S3≀C2, C2.2(C32⋊Q16), C62.C22.3C2, (C3×C6).5(C4⋊C4), C2.5(C3⋊S3.Q8), C3⋊Dic3.13(C2×C4), (C2×C32⋊2C8).5C2, (C2×C3⋊Dic3).5C22, SmallGroup(288,391)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C32 — C3⋊Dic3 — C62.7D4 |
C1 — C32 — C3×C6 — C3⋊Dic3 — C2×C3⋊Dic3 — C62.C22 — C62.7D4 |
C32 — C3×C6 — C3⋊Dic3 — C62.7D4 |
Generators and relations for C62.7D4
G = < a,b,c,d | a6=b6=1, c4=b3, d2=a3, ab=ba, cac-1=a3b4, dad-1=a-1, cbc-1=a2b3, bd=db, dcd-1=b3c3 >
Subgroups: 264 in 62 conjugacy classes, 19 normal (15 characteristic)
C1, C2 [×3], C3 [×2], C4 [×4], C22, C6 [×6], C8 [×2], C2×C4 [×3], C32, Dic3 [×6], C12 [×2], C2×C6 [×2], C4⋊C4 [×2], C2×C8, C3×C6 [×3], C2×Dic3 [×4], C2×C12 [×2], C2.D8, C3×Dic3 [×2], C3⋊Dic3 [×2], C62, Dic3⋊C4 [×2], C32⋊2C8 [×2], C6×Dic3 [×2], C2×C3⋊Dic3, C62.C22 [×2], C2×C32⋊2C8, C62.7D4
Quotients: C1, C2 [×3], C4 [×2], C22, C2×C4, D4, Q8, C4⋊C4, D8, Q16, C2.D8, S3≀C2, C3⋊S3.Q8, C32⋊D8, C32⋊Q16, C62.7D4
Character table of C62.7D4
class | 1 | 2A | 2B | 2C | 3A | 3B | 4A | 4B | 4C | 4D | 4E | 4F | 6A | 6B | 6C | 6D | 6E | 6F | 8A | 8B | 8C | 8D | 12A | 12B | 12C | 12D | 12E | 12F | 12G | 12H | |
size | 1 | 1 | 1 | 1 | 4 | 4 | 12 | 12 | 12 | 12 | 18 | 18 | 4 | 4 | 4 | 4 | 4 | 4 | 18 | 18 | 18 | 18 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | -1 | -1 | 1 | 1 | 1 | i | -i | i | -i | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | -i | -i | i | i | i | i | -i | -i | linear of order 4 |
ρ6 | 1 | -1 | -1 | 1 | 1 | 1 | -i | -i | i | i | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | i | -i | -i | -i | i | i | -i | i | linear of order 4 |
ρ7 | 1 | -1 | -1 | 1 | 1 | 1 | i | i | -i | -i | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -i | i | i | i | -i | -i | i | -i | linear of order 4 |
ρ8 | 1 | -1 | -1 | 1 | 1 | 1 | -i | i | -i | i | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | i | i | -i | -i | -i | -i | i | i | linear of order 4 |
ρ9 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | -2 | -2 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | -2 | 2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | -2 | -2 | -2 | 2 | √2 | √2 | -√2 | -√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D8 |
ρ11 | 2 | -2 | 2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | -2 | -2 | -2 | 2 | -√2 | -√2 | √2 | √2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D8 |
ρ12 | 2 | -2 | -2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 2 | -2 | -2 | -2 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from Q8, Schur index 2 |
ρ13 | 2 | 2 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | -2 | 2 | -2 | -2 | √2 | -√2 | -√2 | √2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from Q16, Schur index 2 |
ρ14 | 2 | 2 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | -2 | 2 | -2 | -2 | -√2 | √2 | √2 | -√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from Q16, Schur index 2 |
ρ15 | 4 | 4 | 4 | 4 | 1 | -2 | -2 | 0 | 0 | -2 | 0 | 0 | -2 | -2 | -2 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | orthogonal lifted from S3≀C2 |
ρ16 | 4 | 4 | 4 | 4 | -2 | 1 | 0 | 2 | 2 | 0 | 0 | 0 | 1 | 1 | 1 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | -1 | -1 | -1 | 0 | orthogonal lifted from S3≀C2 |
ρ17 | 4 | 4 | 4 | 4 | -2 | 1 | 0 | -2 | -2 | 0 | 0 | 0 | 1 | 1 | 1 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | orthogonal lifted from S3≀C2 |
ρ18 | 4 | 4 | 4 | 4 | 1 | -2 | 2 | 0 | 0 | 2 | 0 | 0 | -2 | -2 | -2 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | -1 | 0 | -1 | -1 | 0 | 0 | 0 | -1 | orthogonal lifted from S3≀C2 |
ρ19 | 4 | 4 | -4 | -4 | -2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | -1 | -1 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | -√3 | 0 | 0 | √3 | -√3 | √3 | 0 | symplectic lifted from C32⋊Q16, Schur index 2 |
ρ20 | 4 | 4 | -4 | -4 | 1 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | 2 | 1 | -1 | -1 | 0 | 0 | 0 | 0 | √3 | 0 | √3 | -√3 | 0 | 0 | 0 | -√3 | symplectic lifted from C32⋊Q16, Schur index 2 |
ρ21 | 4 | 4 | -4 | -4 | 1 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | 2 | 1 | -1 | -1 | 0 | 0 | 0 | 0 | -√3 | 0 | -√3 | √3 | 0 | 0 | 0 | √3 | symplectic lifted from C32⋊Q16, Schur index 2 |
ρ22 | 4 | 4 | -4 | -4 | -2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | -1 | -1 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | √3 | 0 | 0 | -√3 | √3 | -√3 | 0 | symplectic lifted from C32⋊Q16, Schur index 2 |
ρ23 | 4 | -4 | 4 | -4 | 1 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | 2 | -1 | -1 | 1 | 0 | 0 | 0 | 0 | √-3 | 0 | -√-3 | √-3 | 0 | 0 | 0 | -√-3 | complex lifted from C32⋊D8 |
ρ24 | 4 | -4 | 4 | -4 | 1 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | 2 | -1 | -1 | 1 | 0 | 0 | 0 | 0 | -√-3 | 0 | √-3 | -√-3 | 0 | 0 | 0 | √-3 | complex lifted from C32⋊D8 |
ρ25 | 4 | -4 | 4 | -4 | -2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 1 | -1 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | -√-3 | 0 | 0 | -√-3 | √-3 | √-3 | 0 | complex lifted from C32⋊D8 |
ρ26 | 4 | -4 | 4 | -4 | -2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 1 | -1 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | √-3 | 0 | 0 | √-3 | -√-3 | -√-3 | 0 | complex lifted from C32⋊D8 |
ρ27 | 4 | -4 | -4 | 4 | 1 | -2 | 2i | 0 | 0 | -2i | 0 | 0 | 2 | 2 | -2 | -1 | 1 | -1 | 0 | 0 | 0 | 0 | i | 0 | -i | -i | 0 | 0 | 0 | i | complex lifted from C3⋊S3.Q8 |
ρ28 | 4 | -4 | -4 | 4 | -2 | 1 | 0 | -2i | 2i | 0 | 0 | 0 | -1 | -1 | 1 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | i | 0 | 0 | -i | -i | i | 0 | complex lifted from C3⋊S3.Q8 |
ρ29 | 4 | -4 | -4 | 4 | 1 | -2 | -2i | 0 | 0 | 2i | 0 | 0 | 2 | 2 | -2 | -1 | 1 | -1 | 0 | 0 | 0 | 0 | -i | 0 | i | i | 0 | 0 | 0 | -i | complex lifted from C3⋊S3.Q8 |
ρ30 | 4 | -4 | -4 | 4 | -2 | 1 | 0 | 2i | -2i | 0 | 0 | 0 | -1 | -1 | 1 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | -i | 0 | 0 | i | i | -i | 0 | complex lifted from C3⋊S3.Q8 |
(1 51)(2 13 30 52 78 81)(3 53)(4 83 80 54 32 15)(5 55)(6 9 26 56 74 85)(7 49)(8 87 76 50 28 11)(10 75)(12 77)(14 79)(16 73)(17 89 33 60 42 67)(18 61)(19 69 44 62 35 91)(20 63)(21 93 37 64 46 71)(22 57)(23 65 48 58 39 95)(24 59)(25 84)(27 86)(29 88)(31 82)(34 68)(36 70)(38 72)(40 66)(41 96)(43 90)(45 92)(47 94)
(1 73 29 5 77 25)(2 6)(3 27 79 7 31 75)(4 8)(9 13)(10 53 86 14 49 82)(11 15)(12 84 51 16 88 55)(17 21)(18 38 43 22 34 47)(19 23)(20 41 36 24 45 40)(26 30)(28 32)(33 37)(35 39)(42 46)(44 48)(50 54)(52 56)(57 68 94 61 72 90)(58 62)(59 92 66 63 96 70)(60 64)(65 69)(67 71)(74 78)(76 80)(81 85)(83 87)(89 93)(91 95)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)
(1 57 51 22)(2 64 52 21)(3 63 53 20)(4 62 54 19)(5 61 55 18)(6 60 56 17)(7 59 49 24)(8 58 50 23)(9 33 74 67)(10 40 75 66)(11 39 76 65)(12 38 77 72)(13 37 78 71)(14 36 79 70)(15 35 80 69)(16 34 73 68)(25 90 84 43)(26 89 85 42)(27 96 86 41)(28 95 87 48)(29 94 88 47)(30 93 81 46)(31 92 82 45)(32 91 83 44)
G:=sub<Sym(96)| (1,51)(2,13,30,52,78,81)(3,53)(4,83,80,54,32,15)(5,55)(6,9,26,56,74,85)(7,49)(8,87,76,50,28,11)(10,75)(12,77)(14,79)(16,73)(17,89,33,60,42,67)(18,61)(19,69,44,62,35,91)(20,63)(21,93,37,64,46,71)(22,57)(23,65,48,58,39,95)(24,59)(25,84)(27,86)(29,88)(31,82)(34,68)(36,70)(38,72)(40,66)(41,96)(43,90)(45,92)(47,94), (1,73,29,5,77,25)(2,6)(3,27,79,7,31,75)(4,8)(9,13)(10,53,86,14,49,82)(11,15)(12,84,51,16,88,55)(17,21)(18,38,43,22,34,47)(19,23)(20,41,36,24,45,40)(26,30)(28,32)(33,37)(35,39)(42,46)(44,48)(50,54)(52,56)(57,68,94,61,72,90)(58,62)(59,92,66,63,96,70)(60,64)(65,69)(67,71)(74,78)(76,80)(81,85)(83,87)(89,93)(91,95), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96), (1,57,51,22)(2,64,52,21)(3,63,53,20)(4,62,54,19)(5,61,55,18)(6,60,56,17)(7,59,49,24)(8,58,50,23)(9,33,74,67)(10,40,75,66)(11,39,76,65)(12,38,77,72)(13,37,78,71)(14,36,79,70)(15,35,80,69)(16,34,73,68)(25,90,84,43)(26,89,85,42)(27,96,86,41)(28,95,87,48)(29,94,88,47)(30,93,81,46)(31,92,82,45)(32,91,83,44)>;
G:=Group( (1,51)(2,13,30,52,78,81)(3,53)(4,83,80,54,32,15)(5,55)(6,9,26,56,74,85)(7,49)(8,87,76,50,28,11)(10,75)(12,77)(14,79)(16,73)(17,89,33,60,42,67)(18,61)(19,69,44,62,35,91)(20,63)(21,93,37,64,46,71)(22,57)(23,65,48,58,39,95)(24,59)(25,84)(27,86)(29,88)(31,82)(34,68)(36,70)(38,72)(40,66)(41,96)(43,90)(45,92)(47,94), (1,73,29,5,77,25)(2,6)(3,27,79,7,31,75)(4,8)(9,13)(10,53,86,14,49,82)(11,15)(12,84,51,16,88,55)(17,21)(18,38,43,22,34,47)(19,23)(20,41,36,24,45,40)(26,30)(28,32)(33,37)(35,39)(42,46)(44,48)(50,54)(52,56)(57,68,94,61,72,90)(58,62)(59,92,66,63,96,70)(60,64)(65,69)(67,71)(74,78)(76,80)(81,85)(83,87)(89,93)(91,95), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96), (1,57,51,22)(2,64,52,21)(3,63,53,20)(4,62,54,19)(5,61,55,18)(6,60,56,17)(7,59,49,24)(8,58,50,23)(9,33,74,67)(10,40,75,66)(11,39,76,65)(12,38,77,72)(13,37,78,71)(14,36,79,70)(15,35,80,69)(16,34,73,68)(25,90,84,43)(26,89,85,42)(27,96,86,41)(28,95,87,48)(29,94,88,47)(30,93,81,46)(31,92,82,45)(32,91,83,44) );
G=PermutationGroup([(1,51),(2,13,30,52,78,81),(3,53),(4,83,80,54,32,15),(5,55),(6,9,26,56,74,85),(7,49),(8,87,76,50,28,11),(10,75),(12,77),(14,79),(16,73),(17,89,33,60,42,67),(18,61),(19,69,44,62,35,91),(20,63),(21,93,37,64,46,71),(22,57),(23,65,48,58,39,95),(24,59),(25,84),(27,86),(29,88),(31,82),(34,68),(36,70),(38,72),(40,66),(41,96),(43,90),(45,92),(47,94)], [(1,73,29,5,77,25),(2,6),(3,27,79,7,31,75),(4,8),(9,13),(10,53,86,14,49,82),(11,15),(12,84,51,16,88,55),(17,21),(18,38,43,22,34,47),(19,23),(20,41,36,24,45,40),(26,30),(28,32),(33,37),(35,39),(42,46),(44,48),(50,54),(52,56),(57,68,94,61,72,90),(58,62),(59,92,66,63,96,70),(60,64),(65,69),(67,71),(74,78),(76,80),(81,85),(83,87),(89,93),(91,95)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96)], [(1,57,51,22),(2,64,52,21),(3,63,53,20),(4,62,54,19),(5,61,55,18),(6,60,56,17),(7,59,49,24),(8,58,50,23),(9,33,74,67),(10,40,75,66),(11,39,76,65),(12,38,77,72),(13,37,78,71),(14,36,79,70),(15,35,80,69),(16,34,73,68),(25,90,84,43),(26,89,85,42),(27,96,86,41),(28,95,87,48),(29,94,88,47),(30,93,81,46),(31,92,82,45),(32,91,83,44)])
Matrix representation of C62.7D4 ►in GL8(𝔽73)
72 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 72 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 72 | 72 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 72 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 72 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 72 | 72 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
45 | 33 | 0 | 0 | 0 | 0 | 0 | 0 |
47 | 28 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 41 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 41 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 7 | 14 |
0 | 0 | 0 | 0 | 0 | 0 | 7 | 66 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
26 | 32 | 0 | 0 | 0 | 0 | 0 | 0 |
45 | 47 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 32 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 7 | 14 |
0 | 0 | 0 | 0 | 0 | 0 | 7 | 66 |
G:=sub<GL(8,GF(73))| [72,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,72,1,0,0,0,0,0,0,72,0],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,72,1,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[45,47,0,0,0,0,0,0,33,28,0,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,41,41,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,7,7,0,0,0,0,0,0,14,66,0,0],[26,45,0,0,0,0,0,0,32,47,0,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,32,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,7,7,0,0,0,0,0,0,14,66] >;
C62.7D4 in GAP, Magma, Sage, TeX
C_6^2._7D_4
% in TeX
G:=Group("C6^2.7D4");
// GroupNames label
G:=SmallGroup(288,391);
// by ID
G=gap.SmallGroup(288,391);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-3,3,56,85,64,422,219,100,2693,2028,691,797,2372]);
// Polycyclic
G:=Group<a,b,c,d|a^6=b^6=1,c^4=b^3,d^2=a^3,a*b=b*a,c*a*c^-1=a^3*b^4,d*a*d^-1=a^-1,c*b*c^-1=a^2*b^3,b*d=d*b,d*c*d^-1=b^3*c^3>;
// generators/relations
Export