extension | φ:Q→Aut N | d | ρ | Label | ID |
C12.1(C3xD4) = C3xC6.D8 | φ: C3xD4/C6 → C22 ⊆ Aut C12 | 96 | | C12.1(C3xD4) | 288,243 |
C12.2(C3xD4) = C3xC6.SD16 | φ: C3xD4/C6 → C22 ⊆ Aut C12 | 96 | | C12.2(C3xD4) | 288,244 |
C12.3(C3xD4) = C3xC3:D16 | φ: C3xD4/C6 → C22 ⊆ Aut C12 | 48 | 4 | C12.3(C3xD4) | 288,260 |
C12.4(C3xD4) = C3xD8.S3 | φ: C3xD4/C6 → C22 ⊆ Aut C12 | 48 | 4 | C12.4(C3xD4) | 288,261 |
C12.5(C3xD4) = C3xC8.6D6 | φ: C3xD4/C6 → C22 ⊆ Aut C12 | 96 | 4 | C12.5(C3xD4) | 288,262 |
C12.6(C3xD4) = C3xC3:Q32 | φ: C3xD4/C6 → C22 ⊆ Aut C12 | 96 | 4 | C12.6(C3xD4) | 288,263 |
C12.7(C3xD4) = C3xD4:Dic3 | φ: C3xD4/C6 → C22 ⊆ Aut C12 | 48 | | C12.7(C3xD4) | 288,266 |
C12.8(C3xD4) = C3xC12.D4 | φ: C3xD4/C6 → C22 ⊆ Aut C12 | 24 | 4 | C12.8(C3xD4) | 288,267 |
C12.9(C3xD4) = C3xQ8:2Dic3 | φ: C3xD4/C6 → C22 ⊆ Aut C12 | 96 | | C12.9(C3xD4) | 288,269 |
C12.10(C3xD4) = C3xC12.10D4 | φ: C3xD4/C6 → C22 ⊆ Aut C12 | 48 | 4 | C12.10(C3xD4) | 288,270 |
C12.11(C3xD4) = C3xC4.D12 | φ: C3xD4/C6 → C22 ⊆ Aut C12 | 96 | | C12.11(C3xD4) | 288,668 |
C12.12(C3xD4) = C3xC8:D6 | φ: C3xD4/C6 → C22 ⊆ Aut C12 | 48 | 4 | C12.12(C3xD4) | 288,679 |
C12.13(C3xD4) = C3xC8.D6 | φ: C3xD4/C6 → C22 ⊆ Aut C12 | 48 | 4 | C12.13(C3xD4) | 288,680 |
C12.14(C3xD4) = C6xD4:S3 | φ: C3xD4/C6 → C22 ⊆ Aut C12 | 48 | | C12.14(C3xD4) | 288,702 |
C12.15(C3xD4) = C3xD12:6C22 | φ: C3xD4/C6 → C22 ⊆ Aut C12 | 24 | 4 | C12.15(C3xD4) | 288,703 |
C12.16(C3xD4) = C6xD4.S3 | φ: C3xD4/C6 → C22 ⊆ Aut C12 | 48 | | C12.16(C3xD4) | 288,704 |
C12.17(C3xD4) = C3xC23.12D6 | φ: C3xD4/C6 → C22 ⊆ Aut C12 | 48 | | C12.17(C3xD4) | 288,707 |
C12.18(C3xD4) = C6xQ8:2S3 | φ: C3xD4/C6 → C22 ⊆ Aut C12 | 96 | | C12.18(C3xD4) | 288,712 |
C12.19(C3xD4) = C3xQ8.11D6 | φ: C3xD4/C6 → C22 ⊆ Aut C12 | 48 | 4 | C12.19(C3xD4) | 288,713 |
C12.20(C3xD4) = C6xC3:Q16 | φ: C3xD4/C6 → C22 ⊆ Aut C12 | 96 | | C12.20(C3xD4) | 288,714 |
C12.21(C3xD4) = C3xDic3:Q8 | φ: C3xD4/C6 → C22 ⊆ Aut C12 | 96 | | C12.21(C3xD4) | 288,715 |
C12.22(C3xD4) = C3xD6:3Q8 | φ: C3xD4/C6 → C22 ⊆ Aut C12 | 96 | | C12.22(C3xD4) | 288,717 |
C12.23(C3xD4) = C3xC12.23D4 | φ: C3xD4/C6 → C22 ⊆ Aut C12 | 96 | | C12.23(C3xD4) | 288,718 |
C12.24(C3xD4) = C3xD48 | φ: C3xD4/C12 → C2 ⊆ Aut C12 | 96 | 2 | C12.24(C3xD4) | 288,233 |
C12.25(C3xD4) = C3xC48:C2 | φ: C3xD4/C12 → C2 ⊆ Aut C12 | 96 | 2 | C12.25(C3xD4) | 288,234 |
C12.26(C3xD4) = C3xDic24 | φ: C3xD4/C12 → C2 ⊆ Aut C12 | 96 | 2 | C12.26(C3xD4) | 288,235 |
C12.27(C3xD4) = C3xC12:2Q8 | φ: C3xD4/C12 → C2 ⊆ Aut C12 | 96 | | C12.27(C3xD4) | 288,640 |
C12.28(C3xD4) = C3xC42:7S3 | φ: C3xD4/C12 → C2 ⊆ Aut C12 | 96 | | C12.28(C3xD4) | 288,646 |
C12.29(C3xD4) = C6xC24:C2 | φ: C3xD4/C12 → C2 ⊆ Aut C12 | 96 | | C12.29(C3xD4) | 288,673 |
C12.30(C3xD4) = C6xD24 | φ: C3xD4/C12 → C2 ⊆ Aut C12 | 96 | | C12.30(C3xD4) | 288,674 |
C12.31(C3xD4) = C6xDic12 | φ: C3xD4/C12 → C2 ⊆ Aut C12 | 96 | | C12.31(C3xD4) | 288,676 |
C12.32(C3xD4) = C3xC12:C8 | φ: C3xD4/C12 → C2 ⊆ Aut C12 | 96 | | C12.32(C3xD4) | 288,238 |
C12.33(C3xD4) = C3xC42:4S3 | φ: C3xD4/C12 → C2 ⊆ Aut C12 | 24 | 2 | C12.33(C3xD4) | 288,239 |
C12.34(C3xD4) = C3xC24.C4 | φ: C3xD4/C12 → C2 ⊆ Aut C12 | 48 | 2 | C12.34(C3xD4) | 288,253 |
C12.35(C3xD4) = C3xC4oD24 | φ: C3xD4/C12 → C2 ⊆ Aut C12 | 48 | 2 | C12.35(C3xD4) | 288,675 |
C12.36(C3xD4) = C9xD16 | φ: C3xD4/C12 → C2 ⊆ Aut C12 | 144 | 2 | C12.36(C3xD4) | 288,61 |
C12.37(C3xD4) = C9xSD32 | φ: C3xD4/C12 → C2 ⊆ Aut C12 | 144 | 2 | C12.37(C3xD4) | 288,62 |
C12.38(C3xD4) = C9xQ32 | φ: C3xD4/C12 → C2 ⊆ Aut C12 | 288 | 2 | C12.38(C3xD4) | 288,63 |
C12.39(C3xD4) = C9xC4.4D4 | φ: C3xD4/C12 → C2 ⊆ Aut C12 | 144 | | C12.39(C3xD4) | 288,174 |
C12.40(C3xD4) = C9xC4:1D4 | φ: C3xD4/C12 → C2 ⊆ Aut C12 | 144 | | C12.40(C3xD4) | 288,177 |
C12.41(C3xD4) = C9xC4:Q8 | φ: C3xD4/C12 → C2 ⊆ Aut C12 | 288 | | C12.41(C3xD4) | 288,178 |
C12.42(C3xD4) = D8xC18 | φ: C3xD4/C12 → C2 ⊆ Aut C12 | 144 | | C12.42(C3xD4) | 288,182 |
C12.43(C3xD4) = SD16xC18 | φ: C3xD4/C12 → C2 ⊆ Aut C12 | 144 | | C12.43(C3xD4) | 288,183 |
C12.44(C3xD4) = Q16xC18 | φ: C3xD4/C12 → C2 ⊆ Aut C12 | 288 | | C12.44(C3xD4) | 288,184 |
C12.45(C3xD4) = C32xD16 | φ: C3xD4/C12 → C2 ⊆ Aut C12 | 144 | | C12.45(C3xD4) | 288,329 |
C12.46(C3xD4) = C32xSD32 | φ: C3xD4/C12 → C2 ⊆ Aut C12 | 144 | | C12.46(C3xD4) | 288,330 |
C12.47(C3xD4) = C32xQ32 | φ: C3xD4/C12 → C2 ⊆ Aut C12 | 288 | | C12.47(C3xD4) | 288,331 |
C12.48(C3xD4) = C32xC4.4D4 | φ: C3xD4/C12 → C2 ⊆ Aut C12 | 144 | | C12.48(C3xD4) | 288,821 |
C12.49(C3xD4) = C32xC4:Q8 | φ: C3xD4/C12 → C2 ⊆ Aut C12 | 288 | | C12.49(C3xD4) | 288,825 |
C12.50(C3xD4) = D8xC3xC6 | φ: C3xD4/C12 → C2 ⊆ Aut C12 | 144 | | C12.50(C3xD4) | 288,829 |
C12.51(C3xD4) = SD16xC3xC6 | φ: C3xD4/C12 → C2 ⊆ Aut C12 | 144 | | C12.51(C3xD4) | 288,830 |
C12.52(C3xD4) = Q16xC3xC6 | φ: C3xD4/C12 → C2 ⊆ Aut C12 | 288 | | C12.52(C3xD4) | 288,831 |
C12.53(C3xD4) = C3xC2.Dic12 | φ: C3xD4/C2xC6 → C2 ⊆ Aut C12 | 96 | | C12.53(C3xD4) | 288,250 |
C12.54(C3xD4) = C3xC2.D24 | φ: C3xD4/C2xC6 → C2 ⊆ Aut C12 | 96 | | C12.54(C3xD4) | 288,255 |
C12.55(C3xD4) = C3xC12.46D4 | φ: C3xD4/C2xC6 → C2 ⊆ Aut C12 | 48 | 4 | C12.55(C3xD4) | 288,257 |
C12.56(C3xD4) = C3xC12.47D4 | φ: C3xD4/C2xC6 → C2 ⊆ Aut C12 | 48 | 4 | C12.56(C3xD4) | 288,258 |
C12.57(C3xD4) = C3xC12.48D4 | φ: C3xD4/C2xC6 → C2 ⊆ Aut C12 | 48 | | C12.57(C3xD4) | 288,695 |
C12.58(C3xD4) = C3xD4:D6 | φ: C3xD4/C2xC6 → C2 ⊆ Aut C12 | 48 | 4 | C12.58(C3xD4) | 288,720 |
C12.59(C3xD4) = C3xQ8.14D6 | φ: C3xD4/C2xC6 → C2 ⊆ Aut C12 | 48 | 4 | C12.59(C3xD4) | 288,722 |
C12.60(C3xD4) = C3xDic3:C8 | φ: C3xD4/C2xC6 → C2 ⊆ Aut C12 | 96 | | C12.60(C3xD4) | 288,248 |
C12.61(C3xD4) = C3xD6:C8 | φ: C3xD4/C2xC6 → C2 ⊆ Aut C12 | 96 | | C12.61(C3xD4) | 288,254 |
C12.62(C3xD4) = C3xC12.53D4 | φ: C3xD4/C2xC6 → C2 ⊆ Aut C12 | 48 | 4 | C12.62(C3xD4) | 288,256 |
C12.63(C3xD4) = C3xD12:C4 | φ: C3xD4/C2xC6 → C2 ⊆ Aut C12 | 48 | 4 | C12.63(C3xD4) | 288,259 |
C12.64(C3xD4) = C3xC12.55D4 | φ: C3xD4/C2xC6 → C2 ⊆ Aut C12 | 48 | | C12.64(C3xD4) | 288,264 |
C12.65(C3xD4) = C3xQ8:3Dic3 | φ: C3xD4/C2xC6 → C2 ⊆ Aut C12 | 48 | 4 | C12.65(C3xD4) | 288,271 |
C12.66(C3xD4) = C3xQ8.13D6 | φ: C3xD4/C2xC6 → C2 ⊆ Aut C12 | 48 | 4 | C12.66(C3xD4) | 288,721 |
C12.67(C3xD4) = C9xC4.D4 | φ: C3xD4/C2xC6 → C2 ⊆ Aut C12 | 72 | 4 | C12.67(C3xD4) | 288,50 |
C12.68(C3xD4) = C9xC4.10D4 | φ: C3xD4/C2xC6 → C2 ⊆ Aut C12 | 144 | 4 | C12.68(C3xD4) | 288,51 |
C12.69(C3xD4) = C9xD4:C4 | φ: C3xD4/C2xC6 → C2 ⊆ Aut C12 | 144 | | C12.69(C3xD4) | 288,52 |
C12.70(C3xD4) = C9xQ8:C4 | φ: C3xD4/C2xC6 → C2 ⊆ Aut C12 | 288 | | C12.70(C3xD4) | 288,53 |
C12.71(C3xD4) = C9xC4:D4 | φ: C3xD4/C2xC6 → C2 ⊆ Aut C12 | 144 | | C12.71(C3xD4) | 288,171 |
C12.72(C3xD4) = C9xC22:Q8 | φ: C3xD4/C2xC6 → C2 ⊆ Aut C12 | 144 | | C12.72(C3xD4) | 288,172 |
C12.73(C3xD4) = C9xC8:C22 | φ: C3xD4/C2xC6 → C2 ⊆ Aut C12 | 72 | 4 | C12.73(C3xD4) | 288,186 |
C12.74(C3xD4) = C9xC8.C22 | φ: C3xD4/C2xC6 → C2 ⊆ Aut C12 | 144 | 4 | C12.74(C3xD4) | 288,187 |
C12.75(C3xD4) = C32xC4.D4 | φ: C3xD4/C2xC6 → C2 ⊆ Aut C12 | 72 | | C12.75(C3xD4) | 288,318 |
C12.76(C3xD4) = C32xC4.10D4 | φ: C3xD4/C2xC6 → C2 ⊆ Aut C12 | 144 | | C12.76(C3xD4) | 288,319 |
C12.77(C3xD4) = C32xD4:C4 | φ: C3xD4/C2xC6 → C2 ⊆ Aut C12 | 144 | | C12.77(C3xD4) | 288,320 |
C12.78(C3xD4) = C32xQ8:C4 | φ: C3xD4/C2xC6 → C2 ⊆ Aut C12 | 288 | | C12.78(C3xD4) | 288,321 |
C12.79(C3xD4) = C32xC22:Q8 | φ: C3xD4/C2xC6 → C2 ⊆ Aut C12 | 144 | | C12.79(C3xD4) | 288,819 |
C12.80(C3xD4) = C32xC8:C22 | φ: C3xD4/C2xC6 → C2 ⊆ Aut C12 | 72 | | C12.80(C3xD4) | 288,833 |
C12.81(C3xD4) = C32xC8.C22 | φ: C3xD4/C2xC6 → C2 ⊆ Aut C12 | 144 | | C12.81(C3xD4) | 288,834 |
C12.82(C3xD4) = C9xC22:C8 | central extension (φ=1) | 144 | | C12.82(C3xD4) | 288,48 |
C12.83(C3xD4) = C9xC4wrC2 | central extension (φ=1) | 72 | 2 | C12.83(C3xD4) | 288,54 |
C12.84(C3xD4) = C9xC4:C8 | central extension (φ=1) | 288 | | C12.84(C3xD4) | 288,55 |
C12.85(C3xD4) = C9xC8.C4 | central extension (φ=1) | 144 | 2 | C12.85(C3xD4) | 288,58 |
C12.86(C3xD4) = D4xC36 | central extension (φ=1) | 144 | | C12.86(C3xD4) | 288,168 |
C12.87(C3xD4) = C9xC4oD8 | central extension (φ=1) | 144 | 2 | C12.87(C3xD4) | 288,185 |
C12.88(C3xD4) = C32xC22:C8 | central extension (φ=1) | 144 | | C12.88(C3xD4) | 288,316 |
C12.89(C3xD4) = C32xC4wrC2 | central extension (φ=1) | 72 | | C12.89(C3xD4) | 288,322 |
C12.90(C3xD4) = C32xC4:C8 | central extension (φ=1) | 288 | | C12.90(C3xD4) | 288,323 |
C12.91(C3xD4) = C32xC8.C4 | central extension (φ=1) | 144 | | C12.91(C3xD4) | 288,326 |
C12.92(C3xD4) = C32xC4oD8 | central extension (φ=1) | 144 | | C12.92(C3xD4) | 288,832 |