extension | φ:Q→Aut N | d | ρ | Label | ID |
C6.1(D4⋊2S3) = C62.13C23 | φ: D4⋊2S3/Dic6 → C2 ⊆ Aut C6 | 96 | | C6.1(D4:2S3) | 288,491 |
C6.2(D4⋊2S3) = C62.19C23 | φ: D4⋊2S3/Dic6 → C2 ⊆ Aut C6 | 48 | | C6.2(D4:2S3) | 288,497 |
C6.3(D4⋊2S3) = C62.23C23 | φ: D4⋊2S3/Dic6 → C2 ⊆ Aut C6 | 48 | | C6.3(D4:2S3) | 288,501 |
C6.4(D4⋊2S3) = C62.33C23 | φ: D4⋊2S3/Dic6 → C2 ⊆ Aut C6 | 96 | | C6.4(D4:2S3) | 288,511 |
C6.5(D4⋊2S3) = C12.30D12 | φ: D4⋊2S3/Dic6 → C2 ⊆ Aut C6 | 48 | | C6.5(D4:2S3) | 288,519 |
C6.6(D4⋊2S3) = C62.42C23 | φ: D4⋊2S3/Dic6 → C2 ⊆ Aut C6 | 96 | | C6.6(D4:2S3) | 288,520 |
C6.7(D4⋊2S3) = C62.51C23 | φ: D4⋊2S3/Dic6 → C2 ⊆ Aut C6 | 48 | | C6.7(D4:2S3) | 288,529 |
C6.8(D4⋊2S3) = Dic3⋊D12 | φ: D4⋊2S3/Dic6 → C2 ⊆ Aut C6 | 48 | | C6.8(D4:2S3) | 288,534 |
C6.9(D4⋊2S3) = D6⋊1Dic6 | φ: D4⋊2S3/Dic6 → C2 ⊆ Aut C6 | 96 | | C6.9(D4:2S3) | 288,535 |
C6.10(D4⋊2S3) = D12⋊Dic3 | φ: D4⋊2S3/Dic6 → C2 ⊆ Aut C6 | 96 | | C6.10(D4:2S3) | 288,546 |
C6.11(D4⋊2S3) = C62.77C23 | φ: D4⋊2S3/Dic6 → C2 ⊆ Aut C6 | 48 | | C6.11(D4:2S3) | 288,555 |
C6.12(D4⋊2S3) = C12⋊2D12 | φ: D4⋊2S3/Dic6 → C2 ⊆ Aut C6 | 48 | | C6.12(D4:2S3) | 288,564 |
C6.13(D4⋊2S3) = C62.11C23 | φ: D4⋊2S3/C4×S3 → C2 ⊆ Aut C6 | 96 | | C6.13(D4:2S3) | 288,489 |
C6.14(D4⋊2S3) = Dic3⋊6Dic6 | φ: D4⋊2S3/C4×S3 → C2 ⊆ Aut C6 | 96 | | C6.14(D4:2S3) | 288,492 |
C6.15(D4⋊2S3) = D6⋊7Dic6 | φ: D4⋊2S3/C4×S3 → C2 ⊆ Aut C6 | 96 | | C6.15(D4:2S3) | 288,505 |
C6.16(D4⋊2S3) = C62.29C23 | φ: D4⋊2S3/C4×S3 → C2 ⊆ Aut C6 | 96 | | C6.16(D4:2S3) | 288,507 |
C6.17(D4⋊2S3) = C12.27D12 | φ: D4⋊2S3/C4×S3 → C2 ⊆ Aut C6 | 96 | | C6.17(D4:2S3) | 288,508 |
C6.18(D4⋊2S3) = C62.31C23 | φ: D4⋊2S3/C4×S3 → C2 ⊆ Aut C6 | 96 | | C6.18(D4:2S3) | 288,509 |
C6.19(D4⋊2S3) = C62.39C23 | φ: D4⋊2S3/C4×S3 → C2 ⊆ Aut C6 | 96 | | C6.19(D4:2S3) | 288,517 |
C6.20(D4⋊2S3) = C62.49C23 | φ: D4⋊2S3/C4×S3 → C2 ⊆ Aut C6 | 96 | | C6.20(D4:2S3) | 288,527 |
C6.21(D4⋊2S3) = C62.54C23 | φ: D4⋊2S3/C4×S3 → C2 ⊆ Aut C6 | 96 | | C6.21(D4:2S3) | 288,532 |
C6.22(D4⋊2S3) = C62.55C23 | φ: D4⋊2S3/C4×S3 → C2 ⊆ Aut C6 | 96 | | C6.22(D4:2S3) | 288,533 |
C6.23(D4⋊2S3) = D6.9D12 | φ: D4⋊2S3/C4×S3 → C2 ⊆ Aut C6 | 96 | | C6.23(D4:2S3) | 288,539 |
C6.24(D4⋊2S3) = Dic3×D12 | φ: D4⋊2S3/C4×S3 → C2 ⊆ Aut C6 | 96 | | C6.24(D4:2S3) | 288,540 |
C6.25(D4⋊2S3) = D6⋊3Dic6 | φ: D4⋊2S3/C4×S3 → C2 ⊆ Aut C6 | 96 | | C6.25(D4:2S3) | 288,544 |
C6.26(D4⋊2S3) = C62.75C23 | φ: D4⋊2S3/C4×S3 → C2 ⊆ Aut C6 | 96 | | C6.26(D4:2S3) | 288,553 |
C6.27(D4⋊2S3) = D6⋊2D12 | φ: D4⋊2S3/C4×S3 → C2 ⊆ Aut C6 | 96 | | C6.27(D4:2S3) | 288,556 |
C6.28(D4⋊2S3) = C62.83C23 | φ: D4⋊2S3/C4×S3 → C2 ⊆ Aut C6 | 96 | | C6.28(D4:2S3) | 288,561 |
C6.29(D4⋊2S3) = C62.6C23 | φ: D4⋊2S3/C2×Dic3 → C2 ⊆ Aut C6 | 48 | | C6.29(D4:2S3) | 288,484 |
C6.30(D4⋊2S3) = Dic3⋊5Dic6 | φ: D4⋊2S3/C2×Dic3 → C2 ⊆ Aut C6 | 96 | | C6.30(D4:2S3) | 288,485 |
C6.31(D4⋊2S3) = C62.16C23 | φ: D4⋊2S3/C2×Dic3 → C2 ⊆ Aut C6 | 96 | | C6.31(D4:2S3) | 288,494 |
C6.32(D4⋊2S3) = C62.17C23 | φ: D4⋊2S3/C2×Dic3 → C2 ⊆ Aut C6 | 96 | | C6.32(D4:2S3) | 288,495 |
C6.33(D4⋊2S3) = C62.18C23 | φ: D4⋊2S3/C2×Dic3 → C2 ⊆ Aut C6 | 48 | | C6.33(D4:2S3) | 288,496 |
C6.34(D4⋊2S3) = Dic3.D12 | φ: D4⋊2S3/C2×Dic3 → C2 ⊆ Aut C6 | 48 | | C6.34(D4:2S3) | 288,500 |
C6.35(D4⋊2S3) = C62.24C23 | φ: D4⋊2S3/C2×Dic3 → C2 ⊆ Aut C6 | 48 | | C6.35(D4:2S3) | 288,502 |
C6.36(D4⋊2S3) = C62.28C23 | φ: D4⋊2S3/C2×Dic3 → C2 ⊆ Aut C6 | 96 | | C6.36(D4:2S3) | 288,506 |
C6.37(D4⋊2S3) = C62.37C23 | φ: D4⋊2S3/C2×Dic3 → C2 ⊆ Aut C6 | 96 | | C6.37(D4:2S3) | 288,515 |
C6.38(D4⋊2S3) = C62.38C23 | φ: D4⋊2S3/C2×Dic3 → C2 ⊆ Aut C6 | 48 | | C6.38(D4:2S3) | 288,516 |
C6.39(D4⋊2S3) = C62.47C23 | φ: D4⋊2S3/C2×Dic3 → C2 ⊆ Aut C6 | 96 | | C6.39(D4:2S3) | 288,525 |
C6.40(D4⋊2S3) = Dic3⋊4D12 | φ: D4⋊2S3/C2×Dic3 → C2 ⊆ Aut C6 | 48 | | C6.40(D4:2S3) | 288,528 |
C6.41(D4⋊2S3) = D6.D12 | φ: D4⋊2S3/C2×Dic3 → C2 ⊆ Aut C6 | 48 | | C6.41(D4:2S3) | 288,538 |
C6.42(D4⋊2S3) = C62.65C23 | φ: D4⋊2S3/C2×Dic3 → C2 ⊆ Aut C6 | 48 | | C6.42(D4:2S3) | 288,543 |
C6.43(D4⋊2S3) = D6⋊4Dic6 | φ: D4⋊2S3/C2×Dic3 → C2 ⊆ Aut C6 | 96 | | C6.43(D4:2S3) | 288,547 |
C6.44(D4⋊2S3) = C62.94C23 | φ: D4⋊2S3/C2×Dic3 → C2 ⊆ Aut C6 | 48 | | C6.44(D4:2S3) | 288,600 |
C6.45(D4⋊2S3) = C62.95C23 | φ: D4⋊2S3/C2×Dic3 → C2 ⊆ Aut C6 | 48 | | C6.45(D4:2S3) | 288,601 |
C6.46(D4⋊2S3) = C62.97C23 | φ: D4⋊2S3/C2×Dic3 → C2 ⊆ Aut C6 | 48 | | C6.46(D4:2S3) | 288,603 |
C6.47(D4⋊2S3) = C62.98C23 | φ: D4⋊2S3/C2×Dic3 → C2 ⊆ Aut C6 | 48 | | C6.47(D4:2S3) | 288,604 |
C6.48(D4⋊2S3) = C62.100C23 | φ: D4⋊2S3/C2×Dic3 → C2 ⊆ Aut C6 | 48 | | C6.48(D4:2S3) | 288,606 |
C6.49(D4⋊2S3) = C62.101C23 | φ: D4⋊2S3/C2×Dic3 → C2 ⊆ Aut C6 | 48 | | C6.49(D4:2S3) | 288,607 |
C6.50(D4⋊2S3) = C62.56D4 | φ: D4⋊2S3/C2×Dic3 → C2 ⊆ Aut C6 | 48 | | C6.50(D4:2S3) | 288,609 |
C6.51(D4⋊2S3) = C62⋊3Q8 | φ: D4⋊2S3/C2×Dic3 → C2 ⊆ Aut C6 | 48 | | C6.51(D4:2S3) | 288,612 |
C6.52(D4⋊2S3) = C62.60D4 | φ: D4⋊2S3/C2×Dic3 → C2 ⊆ Aut C6 | 48 | | C6.52(D4:2S3) | 288,614 |
C6.53(D4⋊2S3) = C62.111C23 | φ: D4⋊2S3/C2×Dic3 → C2 ⊆ Aut C6 | 48 | | C6.53(D4:2S3) | 288,617 |
C6.54(D4⋊2S3) = C62.113C23 | φ: D4⋊2S3/C2×Dic3 → C2 ⊆ Aut C6 | 48 | | C6.54(D4:2S3) | 288,619 |
C6.55(D4⋊2S3) = Dic3×C3⋊D4 | φ: D4⋊2S3/C2×Dic3 → C2 ⊆ Aut C6 | 48 | | C6.55(D4:2S3) | 288,620 |
C6.56(D4⋊2S3) = C62.117C23 | φ: D4⋊2S3/C2×Dic3 → C2 ⊆ Aut C6 | 48 | | C6.56(D4:2S3) | 288,623 |
C6.57(D4⋊2S3) = C62⋊6D4 | φ: D4⋊2S3/C2×Dic3 → C2 ⊆ Aut C6 | 48 | | C6.57(D4:2S3) | 288,626 |
C6.58(D4⋊2S3) = C62.8C23 | φ: D4⋊2S3/C3⋊D4 → C2 ⊆ Aut C6 | 96 | | C6.58(D4:2S3) | 288,486 |
C6.59(D4⋊2S3) = Dic3.Dic6 | φ: D4⋊2S3/C3⋊D4 → C2 ⊆ Aut C6 | 96 | | C6.59(D4:2S3) | 288,493 |
C6.60(D4⋊2S3) = C62.32C23 | φ: D4⋊2S3/C3⋊D4 → C2 ⊆ Aut C6 | 96 | | C6.60(D4:2S3) | 288,510 |
C6.61(D4⋊2S3) = C62.40C23 | φ: D4⋊2S3/C3⋊D4 → C2 ⊆ Aut C6 | 96 | | C6.61(D4:2S3) | 288,518 |
C6.62(D4⋊2S3) = C62.48C23 | φ: D4⋊2S3/C3⋊D4 → C2 ⊆ Aut C6 | 96 | | C6.62(D4:2S3) | 288,526 |
C6.63(D4⋊2S3) = D6⋊2Dic6 | φ: D4⋊2S3/C3⋊D4 → C2 ⊆ Aut C6 | 96 | | C6.63(D4:2S3) | 288,541 |
C6.64(D4⋊2S3) = C62.72C23 | φ: D4⋊2S3/C3⋊D4 → C2 ⊆ Aut C6 | 96 | | C6.64(D4:2S3) | 288,550 |
C6.65(D4⋊2S3) = C62.85C23 | φ: D4⋊2S3/C3⋊D4 → C2 ⊆ Aut C6 | 96 | | C6.65(D4:2S3) | 288,563 |
C6.66(D4⋊2S3) = C62.99C23 | φ: D4⋊2S3/C3⋊D4 → C2 ⊆ Aut C6 | 48 | | C6.66(D4:2S3) | 288,605 |
C6.67(D4⋊2S3) = C62.57D4 | φ: D4⋊2S3/C3⋊D4 → C2 ⊆ Aut C6 | 48 | | C6.67(D4:2S3) | 288,610 |
C6.68(D4⋊2S3) = C62.112C23 | φ: D4⋊2S3/C3⋊D4 → C2 ⊆ Aut C6 | 48 | | C6.68(D4:2S3) | 288,618 |
C6.69(D4⋊2S3) = C62.115C23 | φ: D4⋊2S3/C3⋊D4 → C2 ⊆ Aut C6 | 48 | | C6.69(D4:2S3) | 288,621 |
C6.70(D4⋊2S3) = C62⋊7D4 | φ: D4⋊2S3/C3⋊D4 → C2 ⊆ Aut C6 | 48 | | C6.70(D4:2S3) | 288,628 |
C6.71(D4⋊2S3) = C62⋊4Q8 | φ: D4⋊2S3/C3⋊D4 → C2 ⊆ Aut C6 | 48 | | C6.71(D4:2S3) | 288,630 |
C6.72(D4⋊2S3) = C23.16D18 | φ: D4⋊2S3/C3×D4 → C2 ⊆ Aut C6 | 144 | | C6.72(D4:2S3) | 288,87 |
C6.73(D4⋊2S3) = C22⋊2Dic18 | φ: D4⋊2S3/C3×D4 → C2 ⊆ Aut C6 | 144 | | C6.73(D4:2S3) | 288,88 |
C6.74(D4⋊2S3) = C23.8D18 | φ: D4⋊2S3/C3×D4 → C2 ⊆ Aut C6 | 144 | | C6.74(D4:2S3) | 288,89 |
C6.75(D4⋊2S3) = Dic9⋊4D4 | φ: D4⋊2S3/C3×D4 → C2 ⊆ Aut C6 | 144 | | C6.75(D4:2S3) | 288,91 |
C6.76(D4⋊2S3) = C23.9D18 | φ: D4⋊2S3/C3×D4 → C2 ⊆ Aut C6 | 144 | | C6.76(D4:2S3) | 288,93 |
C6.77(D4⋊2S3) = Dic9.D4 | φ: D4⋊2S3/C3×D4 → C2 ⊆ Aut C6 | 144 | | C6.77(D4:2S3) | 288,95 |
C6.78(D4⋊2S3) = C22.4D36 | φ: D4⋊2S3/C3×D4 → C2 ⊆ Aut C6 | 144 | | C6.78(D4:2S3) | 288,96 |
C6.79(D4⋊2S3) = Dic9⋊3Q8 | φ: D4⋊2S3/C3×D4 → C2 ⊆ Aut C6 | 288 | | C6.79(D4:2S3) | 288,97 |
C6.80(D4⋊2S3) = Dic9.Q8 | φ: D4⋊2S3/C3×D4 → C2 ⊆ Aut C6 | 288 | | C6.80(D4:2S3) | 288,99 |
C6.81(D4⋊2S3) = C36.3Q8 | φ: D4⋊2S3/C3×D4 → C2 ⊆ Aut C6 | 288 | | C6.81(D4:2S3) | 288,100 |
C6.82(D4⋊2S3) = C4⋊C4⋊7D9 | φ: D4⋊2S3/C3×D4 → C2 ⊆ Aut C6 | 144 | | C6.82(D4:2S3) | 288,102 |
C6.83(D4⋊2S3) = D18⋊2Q8 | φ: D4⋊2S3/C3×D4 → C2 ⊆ Aut C6 | 144 | | C6.83(D4:2S3) | 288,107 |
C6.84(D4⋊2S3) = C4⋊C4⋊D9 | φ: D4⋊2S3/C3×D4 → C2 ⊆ Aut C6 | 144 | | C6.84(D4:2S3) | 288,108 |
C6.85(D4⋊2S3) = D4×Dic9 | φ: D4⋊2S3/C3×D4 → C2 ⊆ Aut C6 | 144 | | C6.85(D4:2S3) | 288,144 |
C6.86(D4⋊2S3) = C23.23D18 | φ: D4⋊2S3/C3×D4 → C2 ⊆ Aut C6 | 144 | | C6.86(D4:2S3) | 288,145 |
C6.87(D4⋊2S3) = C36.17D4 | φ: D4⋊2S3/C3×D4 → C2 ⊆ Aut C6 | 144 | | C6.87(D4:2S3) | 288,146 |
C6.88(D4⋊2S3) = C36⋊2D4 | φ: D4⋊2S3/C3×D4 → C2 ⊆ Aut C6 | 144 | | C6.88(D4:2S3) | 288,148 |
C6.89(D4⋊2S3) = Dic9⋊D4 | φ: D4⋊2S3/C3×D4 → C2 ⊆ Aut C6 | 144 | | C6.89(D4:2S3) | 288,149 |
C6.90(D4⋊2S3) = C2×D4⋊2D9 | φ: D4⋊2S3/C3×D4 → C2 ⊆ Aut C6 | 144 | | C6.90(D4:2S3) | 288,357 |
C6.91(D4⋊2S3) = C62.221C23 | φ: D4⋊2S3/C3×D4 → C2 ⊆ Aut C6 | 144 | | C6.91(D4:2S3) | 288,734 |
C6.92(D4⋊2S3) = C62⋊6Q8 | φ: D4⋊2S3/C3×D4 → C2 ⊆ Aut C6 | 144 | | C6.92(D4:2S3) | 288,735 |
C6.93(D4⋊2S3) = C62.223C23 | φ: D4⋊2S3/C3×D4 → C2 ⊆ Aut C6 | 144 | | C6.93(D4:2S3) | 288,736 |
C6.94(D4⋊2S3) = C62.225C23 | φ: D4⋊2S3/C3×D4 → C2 ⊆ Aut C6 | 144 | | C6.94(D4:2S3) | 288,738 |
C6.95(D4⋊2S3) = C62.227C23 | φ: D4⋊2S3/C3×D4 → C2 ⊆ Aut C6 | 144 | | C6.95(D4:2S3) | 288,740 |
C6.96(D4⋊2S3) = C62.229C23 | φ: D4⋊2S3/C3×D4 → C2 ⊆ Aut C6 | 144 | | C6.96(D4:2S3) | 288,742 |
C6.97(D4⋊2S3) = C62.69D4 | φ: D4⋊2S3/C3×D4 → C2 ⊆ Aut C6 | 144 | | C6.97(D4:2S3) | 288,743 |
C6.98(D4⋊2S3) = C62.231C23 | φ: D4⋊2S3/C3×D4 → C2 ⊆ Aut C6 | 288 | | C6.98(D4:2S3) | 288,744 |
C6.99(D4⋊2S3) = C62.233C23 | φ: D4⋊2S3/C3×D4 → C2 ⊆ Aut C6 | 288 | | C6.99(D4:2S3) | 288,746 |
C6.100(D4⋊2S3) = C62.234C23 | φ: D4⋊2S3/C3×D4 → C2 ⊆ Aut C6 | 288 | | C6.100(D4:2S3) | 288,747 |
C6.101(D4⋊2S3) = C62.236C23 | φ: D4⋊2S3/C3×D4 → C2 ⊆ Aut C6 | 144 | | C6.101(D4:2S3) | 288,749 |
C6.102(D4⋊2S3) = C12.31D12 | φ: D4⋊2S3/C3×D4 → C2 ⊆ Aut C6 | 144 | | C6.102(D4:2S3) | 288,754 |
C6.103(D4⋊2S3) = C62.242C23 | φ: D4⋊2S3/C3×D4 → C2 ⊆ Aut C6 | 144 | | C6.103(D4:2S3) | 288,755 |
C6.104(D4⋊2S3) = D4×C3⋊Dic3 | φ: D4⋊2S3/C3×D4 → C2 ⊆ Aut C6 | 144 | | C6.104(D4:2S3) | 288,791 |
C6.105(D4⋊2S3) = C62.72D4 | φ: D4⋊2S3/C3×D4 → C2 ⊆ Aut C6 | 144 | | C6.105(D4:2S3) | 288,792 |
C6.106(D4⋊2S3) = C62.254C23 | φ: D4⋊2S3/C3×D4 → C2 ⊆ Aut C6 | 144 | | C6.106(D4:2S3) | 288,793 |
C6.107(D4⋊2S3) = C62.256C23 | φ: D4⋊2S3/C3×D4 → C2 ⊆ Aut C6 | 144 | | C6.107(D4:2S3) | 288,795 |
C6.108(D4⋊2S3) = C62⋊14D4 | φ: D4⋊2S3/C3×D4 → C2 ⊆ Aut C6 | 144 | | C6.108(D4:2S3) | 288,796 |
C6.109(D4⋊2S3) = C3×C23.16D6 | central extension (φ=1) | 48 | | C6.109(D4:2S3) | 288,648 |
C6.110(D4⋊2S3) = C3×Dic3.D4 | central extension (φ=1) | 48 | | C6.110(D4:2S3) | 288,649 |
C6.111(D4⋊2S3) = C3×C23.8D6 | central extension (φ=1) | 48 | | C6.111(D4:2S3) | 288,650 |
C6.112(D4⋊2S3) = C3×Dic3⋊4D4 | central extension (φ=1) | 48 | | C6.112(D4:2S3) | 288,652 |
C6.113(D4⋊2S3) = C3×C23.9D6 | central extension (φ=1) | 48 | | C6.113(D4:2S3) | 288,654 |
C6.114(D4⋊2S3) = C3×C23.11D6 | central extension (φ=1) | 48 | | C6.114(D4:2S3) | 288,656 |
C6.115(D4⋊2S3) = C3×C23.21D6 | central extension (φ=1) | 48 | | C6.115(D4:2S3) | 288,657 |
C6.116(D4⋊2S3) = C3×Dic6⋊C4 | central extension (φ=1) | 96 | | C6.116(D4:2S3) | 288,658 |
C6.117(D4⋊2S3) = C3×Dic3.Q8 | central extension (φ=1) | 96 | | C6.117(D4:2S3) | 288,660 |
C6.118(D4⋊2S3) = C3×C4.Dic6 | central extension (φ=1) | 96 | | C6.118(D4:2S3) | 288,661 |
C6.119(D4⋊2S3) = C3×C4⋊C4⋊7S3 | central extension (φ=1) | 96 | | C6.119(D4:2S3) | 288,663 |
C6.120(D4⋊2S3) = C3×C4.D12 | central extension (φ=1) | 96 | | C6.120(D4:2S3) | 288,668 |
C6.121(D4⋊2S3) = C3×C4⋊C4⋊S3 | central extension (φ=1) | 96 | | C6.121(D4:2S3) | 288,669 |
C6.122(D4⋊2S3) = C3×D4×Dic3 | central extension (φ=1) | 48 | | C6.122(D4:2S3) | 288,705 |
C6.123(D4⋊2S3) = C3×C23.23D6 | central extension (φ=1) | 48 | | C6.123(D4:2S3) | 288,706 |
C6.124(D4⋊2S3) = C3×C23.12D6 | central extension (φ=1) | 48 | | C6.124(D4:2S3) | 288,707 |
C6.125(D4⋊2S3) = C3×D6⋊3D4 | central extension (φ=1) | 48 | | C6.125(D4:2S3) | 288,709 |
C6.126(D4⋊2S3) = C3×C23.14D6 | central extension (φ=1) | 48 | | C6.126(D4:2S3) | 288,710 |