Extensions 1→N→G→Q→1 with N=C3xC4oD4 and Q=S3

Direct product G=NxQ with N=C3xC4oD4 and Q=S3
dρLabelID
C3xS3xC4oD4484C3xS3xC4oD4288,998

Semidirect products G=N:Q with N=C3xC4oD4 and Q=S3
extensionφ:Q→Out NdρLabelID
(C3xC4oD4):1S3 = C12.14S4φ: S3/C1S3 ⊆ Out C3xC4oD4484(C3xC4oD4):1S3288,914
(C3xC4oD4):2S3 = C12.7S4φ: S3/C1S3 ⊆ Out C3xC4oD4484+(C3xC4oD4):2S3288,915
(C3xC4oD4):3S3 = C3xC4.6S4φ: S3/C1S3 ⊆ Out C3xC4oD4482(C3xC4oD4):3S3288,903
(C3xC4oD4):4S3 = C3xC4.3S4φ: S3/C1S3 ⊆ Out C3xC4oD4484(C3xC4oD4):4S3288,904
(C3xC4oD4):5S3 = C62.73D4φ: S3/C3C2 ⊆ Out C3xC4oD472(C3xC4oD4):5S3288,806
(C3xC4oD4):6S3 = C62.74D4φ: S3/C3C2 ⊆ Out C3xC4oD4144(C3xC4oD4):6S3288,807
(C3xC4oD4):7S3 = C4oD4xC3:S3φ: S3/C3C2 ⊆ Out C3xC4oD472(C3xC4oD4):7S3288,1013
(C3xC4oD4):8S3 = C62.154C23φ: S3/C3C2 ⊆ Out C3xC4oD472(C3xC4oD4):8S3288,1014
(C3xC4oD4):9S3 = C32:92- 1+4φ: S3/C3C2 ⊆ Out C3xC4oD4144(C3xC4oD4):9S3288,1015
(C3xC4oD4):10S3 = C3xD4:D6φ: S3/C3C2 ⊆ Out C3xC4oD4484(C3xC4oD4):10S3288,720
(C3xC4oD4):11S3 = C3xQ8.13D6φ: S3/C3C2 ⊆ Out C3xC4oD4484(C3xC4oD4):11S3288,721
(C3xC4oD4):12S3 = C3xD4oD12φ: S3/C3C2 ⊆ Out C3xC4oD4484(C3xC4oD4):12S3288,999
(C3xC4oD4):13S3 = C3xQ8oD12φ: S3/C3C2 ⊆ Out C3xC4oD4484(C3xC4oD4):13S3288,1000

Non-split extensions G=N.Q with N=C3xC4oD4 and Q=S3
extensionφ:Q→Out NdρLabelID
(C3xC4oD4).1S3 = C12.9S4φ: S3/C1S3 ⊆ Out C3xC4oD4724(C3xC4oD4).1S3288,70
(C3xC4oD4).2S3 = C12.3S4φ: S3/C1S3 ⊆ Out C3xC4oD41444-(C3xC4oD4).2S3288,338
(C3xC4oD4).3S3 = C12.11S4φ: S3/C1S3 ⊆ Out C3xC4oD41444(C3xC4oD4).3S3288,339
(C3xC4oD4).4S3 = C12.4S4φ: S3/C1S3 ⊆ Out C3xC4oD4724+(C3xC4oD4).4S3288,340
(C3xC4oD4).5S3 = C3:U2(F3)φ: S3/C1S3 ⊆ Out C3xC4oD4724(C3xC4oD4).5S3288,404
(C3xC4oD4).6S3 = C12.6S4φ: S3/C1S3 ⊆ Out C3xC4oD4964-(C3xC4oD4).6S3288,913
(C3xC4oD4).7S3 = C3xU2(F3)φ: S3/C1S3 ⊆ Out C3xC4oD4722(C3xC4oD4).7S3288,400
(C3xC4oD4).8S3 = C3xC4.S4φ: S3/C1S3 ⊆ Out C3xC4oD4964(C3xC4oD4).8S3288,902
(C3xC4oD4).9S3 = Q8:3Dic9φ: S3/C3C2 ⊆ Out C3xC4oD4724(C3xC4oD4).9S3288,44
(C3xC4oD4).10S3 = D4.Dic9φ: S3/C3C2 ⊆ Out C3xC4oD41444(C3xC4oD4).10S3288,158
(C3xC4oD4).11S3 = D4.D18φ: S3/C3C2 ⊆ Out C3xC4oD41444-(C3xC4oD4).11S3288,159
(C3xC4oD4).12S3 = D4:D18φ: S3/C3C2 ⊆ Out C3xC4oD4724+(C3xC4oD4).12S3288,160
(C3xC4oD4).13S3 = D4.9D18φ: S3/C3C2 ⊆ Out C3xC4oD41444(C3xC4oD4).13S3288,161
(C3xC4oD4).14S3 = C62.39D4φ: S3/C3C2 ⊆ Out C3xC4oD472(C3xC4oD4).14S3288,312
(C3xC4oD4).15S3 = C4oD4xD9φ: S3/C3C2 ⊆ Out C3xC4oD4724(C3xC4oD4).15S3288,362
(C3xC4oD4).16S3 = D4:8D18φ: S3/C3C2 ⊆ Out C3xC4oD4724+(C3xC4oD4).16S3288,363
(C3xC4oD4).17S3 = D4.10D18φ: S3/C3C2 ⊆ Out C3xC4oD41444-(C3xC4oD4).17S3288,364
(C3xC4oD4).18S3 = D4.(C3:Dic3)φ: S3/C3C2 ⊆ Out C3xC4oD4144(C3xC4oD4).18S3288,805
(C3xC4oD4).19S3 = C62.75D4φ: S3/C3C2 ⊆ Out C3xC4oD4144(C3xC4oD4).19S3288,808
(C3xC4oD4).20S3 = C3xQ8:3Dic3φ: S3/C3C2 ⊆ Out C3xC4oD4484(C3xC4oD4).20S3288,271
(C3xC4oD4).21S3 = C3xQ8.14D6φ: S3/C3C2 ⊆ Out C3xC4oD4484(C3xC4oD4).21S3288,722
(C3xC4oD4).22S3 = C3xD4.Dic3φ: trivial image484(C3xC4oD4).22S3288,719

׿
x
:
Z
F
o
wr
Q
<