# Extensions 1→N→G→Q→1 with N=C3×C4○D4 and Q=S3

Direct product G=N×Q with N=C3×C4○D4 and Q=S3
dρLabelID
C3×S3×C4○D4484C3xS3xC4oD4288,998

Semidirect products G=N:Q with N=C3×C4○D4 and Q=S3
extensionφ:Q→Out NdρLabelID
(C3×C4○D4)⋊1S3 = C12.14S4φ: S3/C1S3 ⊆ Out C3×C4○D4484(C3xC4oD4):1S3288,914
(C3×C4○D4)⋊2S3 = C12.7S4φ: S3/C1S3 ⊆ Out C3×C4○D4484+(C3xC4oD4):2S3288,915
(C3×C4○D4)⋊3S3 = C3×C4.6S4φ: S3/C1S3 ⊆ Out C3×C4○D4482(C3xC4oD4):3S3288,903
(C3×C4○D4)⋊4S3 = C3×C4.3S4φ: S3/C1S3 ⊆ Out C3×C4○D4484(C3xC4oD4):4S3288,904
(C3×C4○D4)⋊5S3 = C62.73D4φ: S3/C3C2 ⊆ Out C3×C4○D472(C3xC4oD4):5S3288,806
(C3×C4○D4)⋊6S3 = C62.74D4φ: S3/C3C2 ⊆ Out C3×C4○D4144(C3xC4oD4):6S3288,807
(C3×C4○D4)⋊7S3 = C4○D4×C3⋊S3φ: S3/C3C2 ⊆ Out C3×C4○D472(C3xC4oD4):7S3288,1013
(C3×C4○D4)⋊8S3 = C62.154C23φ: S3/C3C2 ⊆ Out C3×C4○D472(C3xC4oD4):8S3288,1014
(C3×C4○D4)⋊9S3 = C3292- 1+4φ: S3/C3C2 ⊆ Out C3×C4○D4144(C3xC4oD4):9S3288,1015
(C3×C4○D4)⋊10S3 = C3×D4⋊D6φ: S3/C3C2 ⊆ Out C3×C4○D4484(C3xC4oD4):10S3288,720
(C3×C4○D4)⋊11S3 = C3×Q8.13D6φ: S3/C3C2 ⊆ Out C3×C4○D4484(C3xC4oD4):11S3288,721
(C3×C4○D4)⋊12S3 = C3×D4○D12φ: S3/C3C2 ⊆ Out C3×C4○D4484(C3xC4oD4):12S3288,999
(C3×C4○D4)⋊13S3 = C3×Q8○D12φ: S3/C3C2 ⊆ Out C3×C4○D4484(C3xC4oD4):13S3288,1000

Non-split extensions G=N.Q with N=C3×C4○D4 and Q=S3
extensionφ:Q→Out NdρLabelID
(C3×C4○D4).1S3 = C12.9S4φ: S3/C1S3 ⊆ Out C3×C4○D4724(C3xC4oD4).1S3288,70
(C3×C4○D4).2S3 = C12.3S4φ: S3/C1S3 ⊆ Out C3×C4○D41444-(C3xC4oD4).2S3288,338
(C3×C4○D4).3S3 = C12.11S4φ: S3/C1S3 ⊆ Out C3×C4○D41444(C3xC4oD4).3S3288,339
(C3×C4○D4).4S3 = C12.4S4φ: S3/C1S3 ⊆ Out C3×C4○D4724+(C3xC4oD4).4S3288,340
(C3×C4○D4).5S3 = C3⋊U2(𝔽3)φ: S3/C1S3 ⊆ Out C3×C4○D4724(C3xC4oD4).5S3288,404
(C3×C4○D4).6S3 = C12.6S4φ: S3/C1S3 ⊆ Out C3×C4○D4964-(C3xC4oD4).6S3288,913
(C3×C4○D4).7S3 = C3×U2(𝔽3)φ: S3/C1S3 ⊆ Out C3×C4○D4722(C3xC4oD4).7S3288,400
(C3×C4○D4).8S3 = C3×C4.S4φ: S3/C1S3 ⊆ Out C3×C4○D4964(C3xC4oD4).8S3288,902
(C3×C4○D4).9S3 = Q83Dic9φ: S3/C3C2 ⊆ Out C3×C4○D4724(C3xC4oD4).9S3288,44
(C3×C4○D4).10S3 = D4.Dic9φ: S3/C3C2 ⊆ Out C3×C4○D41444(C3xC4oD4).10S3288,158
(C3×C4○D4).11S3 = D4.D18φ: S3/C3C2 ⊆ Out C3×C4○D41444-(C3xC4oD4).11S3288,159
(C3×C4○D4).12S3 = D4⋊D18φ: S3/C3C2 ⊆ Out C3×C4○D4724+(C3xC4oD4).12S3288,160
(C3×C4○D4).13S3 = D4.9D18φ: S3/C3C2 ⊆ Out C3×C4○D41444(C3xC4oD4).13S3288,161
(C3×C4○D4).14S3 = C62.39D4φ: S3/C3C2 ⊆ Out C3×C4○D472(C3xC4oD4).14S3288,312
(C3×C4○D4).15S3 = C4○D4×D9φ: S3/C3C2 ⊆ Out C3×C4○D4724(C3xC4oD4).15S3288,362
(C3×C4○D4).16S3 = D48D18φ: S3/C3C2 ⊆ Out C3×C4○D4724+(C3xC4oD4).16S3288,363
(C3×C4○D4).17S3 = D4.10D18φ: S3/C3C2 ⊆ Out C3×C4○D41444-(C3xC4oD4).17S3288,364
(C3×C4○D4).18S3 = D4.(C3⋊Dic3)φ: S3/C3C2 ⊆ Out C3×C4○D4144(C3xC4oD4).18S3288,805
(C3×C4○D4).19S3 = C62.75D4φ: S3/C3C2 ⊆ Out C3×C4○D4144(C3xC4oD4).19S3288,808
(C3×C4○D4).20S3 = C3×Q83Dic3φ: S3/C3C2 ⊆ Out C3×C4○D4484(C3xC4oD4).20S3288,271
(C3×C4○D4).21S3 = C3×Q8.14D6φ: S3/C3C2 ⊆ Out C3×C4○D4484(C3xC4oD4).21S3288,722
(C3×C4○D4).22S3 = C3×D4.Dic3φ: trivial image484(C3xC4oD4).22S3288,719

׿
×
𝔽