extension | φ:Q→Aut N | d | ρ | Label | ID |
C12.1(C4×S3) = C36.Q8 | φ: C4×S3/C6 → C22 ⊆ Aut C12 | 288 | | C12.1(C4xS3) | 288,14 |
C12.2(C4×S3) = C4.Dic18 | φ: C4×S3/C6 → C22 ⊆ Aut C12 | 288 | | C12.2(C4xS3) | 288,15 |
C12.3(C4×S3) = C18.Q16 | φ: C4×S3/C6 → C22 ⊆ Aut C12 | 288 | | C12.3(C4xS3) | 288,16 |
C12.4(C4×S3) = C18.D8 | φ: C4×S3/C6 → C22 ⊆ Aut C12 | 144 | | C12.4(C4xS3) | 288,17 |
C12.5(C4×S3) = C36.53D4 | φ: C4×S3/C6 → C22 ⊆ Aut C12 | 144 | 4 | C12.5(C4xS3) | 288,29 |
C12.6(C4×S3) = Dic18⋊C4 | φ: C4×S3/C6 → C22 ⊆ Aut C12 | 72 | 4 | C12.6(C4xS3) | 288,32 |
C12.7(C4×S3) = Dic9⋊3Q8 | φ: C4×S3/C6 → C22 ⊆ Aut C12 | 288 | | C12.7(C4xS3) | 288,97 |
C12.8(C4×S3) = C4⋊C4×D9 | φ: C4×S3/C6 → C22 ⊆ Aut C12 | 144 | | C12.8(C4xS3) | 288,101 |
C12.9(C4×S3) = C4⋊C4⋊7D9 | φ: C4×S3/C6 → C22 ⊆ Aut C12 | 144 | | C12.9(C4xS3) | 288,102 |
C12.10(C4×S3) = D36⋊C4 | φ: C4×S3/C6 → C22 ⊆ Aut C12 | 144 | | C12.10(C4xS3) | 288,103 |
C12.11(C4×S3) = M4(2)×D9 | φ: C4×S3/C6 → C22 ⊆ Aut C12 | 72 | 4 | C12.11(C4xS3) | 288,116 |
C12.12(C4×S3) = D36.C4 | φ: C4×S3/C6 → C22 ⊆ Aut C12 | 144 | 4 | C12.12(C4xS3) | 288,117 |
C12.13(C4×S3) = D12⋊3Dic3 | φ: C4×S3/C6 → C22 ⊆ Aut C12 | 96 | | C12.13(C4xS3) | 288,210 |
C12.14(C4×S3) = C6.16D24 | φ: C4×S3/C6 → C22 ⊆ Aut C12 | 96 | | C12.14(C4xS3) | 288,211 |
C12.15(C4×S3) = C6.17D24 | φ: C4×S3/C6 → C22 ⊆ Aut C12 | 48 | | C12.15(C4xS3) | 288,212 |
C12.16(C4×S3) = Dic6⋊Dic3 | φ: C4×S3/C6 → C22 ⊆ Aut C12 | 96 | | C12.16(C4xS3) | 288,213 |
C12.17(C4×S3) = C6.Dic12 | φ: C4×S3/C6 → C22 ⊆ Aut C12 | 96 | | C12.17(C4xS3) | 288,214 |
C12.18(C4×S3) = D12⋊4Dic3 | φ: C4×S3/C6 → C22 ⊆ Aut C12 | 24 | 4 | C12.18(C4xS3) | 288,216 |
C12.19(C4×S3) = D12⋊2Dic3 | φ: C4×S3/C6 → C22 ⊆ Aut C12 | 48 | 4 | C12.19(C4xS3) | 288,217 |
C12.20(C4×S3) = C12.80D12 | φ: C4×S3/C6 → C22 ⊆ Aut C12 | 48 | 4 | C12.20(C4xS3) | 288,218 |
C12.21(C4×S3) = C12.6Dic6 | φ: C4×S3/C6 → C22 ⊆ Aut C12 | 96 | | C12.21(C4xS3) | 288,222 |
C12.22(C4×S3) = C12.8Dic6 | φ: C4×S3/C6 → C22 ⊆ Aut C12 | 96 | | C12.22(C4xS3) | 288,224 |
C12.23(C4×S3) = C62.5Q8 | φ: C4×S3/C6 → C22 ⊆ Aut C12 | 48 | 4 | C12.23(C4xS3) | 288,226 |
C12.24(C4×S3) = C12.9Dic6 | φ: C4×S3/C6 → C22 ⊆ Aut C12 | 288 | | C12.24(C4xS3) | 288,282 |
C12.25(C4×S3) = C12.10Dic6 | φ: C4×S3/C6 → C22 ⊆ Aut C12 | 288 | | C12.25(C4xS3) | 288,283 |
C12.26(C4×S3) = C62.113D4 | φ: C4×S3/C6 → C22 ⊆ Aut C12 | 144 | | C12.26(C4xS3) | 288,284 |
C12.27(C4×S3) = C62.114D4 | φ: C4×S3/C6 → C22 ⊆ Aut C12 | 288 | | C12.27(C4xS3) | 288,285 |
C12.28(C4×S3) = C62.8Q8 | φ: C4×S3/C6 → C22 ⊆ Aut C12 | 144 | | C12.28(C4xS3) | 288,297 |
C12.29(C4×S3) = C62.37D4 | φ: C4×S3/C6 → C22 ⊆ Aut C12 | 72 | | C12.29(C4xS3) | 288,300 |
C12.30(C4×S3) = D12.2Dic3 | φ: C4×S3/C6 → C22 ⊆ Aut C12 | 48 | 4 | C12.30(C4xS3) | 288,462 |
C12.31(C4×S3) = D12.Dic3 | φ: C4×S3/C6 → C22 ⊆ Aut C12 | 48 | 4 | C12.31(C4xS3) | 288,463 |
C12.32(C4×S3) = C3⋊C8⋊20D6 | φ: C4×S3/C6 → C22 ⊆ Aut C12 | 24 | 4 | C12.32(C4xS3) | 288,466 |
C12.33(C4×S3) = Dic3×Dic6 | φ: C4×S3/C6 → C22 ⊆ Aut C12 | 96 | | C12.33(C4xS3) | 288,490 |
C12.34(C4×S3) = C62.13C23 | φ: C4×S3/C6 → C22 ⊆ Aut C12 | 96 | | C12.34(C4xS3) | 288,491 |
C12.35(C4×S3) = Dic3⋊6Dic6 | φ: C4×S3/C6 → C22 ⊆ Aut C12 | 96 | | C12.35(C4xS3) | 288,492 |
C12.36(C4×S3) = C62.19C23 | φ: C4×S3/C6 → C22 ⊆ Aut C12 | 48 | | C12.36(C4xS3) | 288,497 |
C12.37(C4×S3) = C62.231C23 | φ: C4×S3/C6 → C22 ⊆ Aut C12 | 288 | | C12.37(C4xS3) | 288,744 |
C12.38(C4×S3) = C62.236C23 | φ: C4×S3/C6 → C22 ⊆ Aut C12 | 144 | | C12.38(C4xS3) | 288,749 |
C12.39(C4×S3) = M4(2)×C3⋊S3 | φ: C4×S3/C6 → C22 ⊆ Aut C12 | 72 | | C12.39(C4xS3) | 288,763 |
C12.40(C4×S3) = C24.47D6 | φ: C4×S3/C6 → C22 ⊆ Aut C12 | 144 | | C12.40(C4xS3) | 288,764 |
C12.41(C4×S3) = C12.73D12 | φ: C4×S3/Dic3 → C2 ⊆ Aut C12 | 96 | | C12.41(C4xS3) | 288,215 |
C12.42(C4×S3) = C3⋊C8.22D6 | φ: C4×S3/Dic3 → C2 ⊆ Aut C12 | 48 | 4 | C12.42(C4xS3) | 288,465 |
C12.43(C4×S3) = C24.60D6 | φ: C4×S3/Dic3 → C2 ⊆ Aut C12 | 48 | 4 | C12.43(C4xS3) | 288,190 |
C12.44(C4×S3) = C24.62D6 | φ: C4×S3/Dic3 → C2 ⊆ Aut C12 | 48 | 4 | C12.44(C4xS3) | 288,192 |
C12.45(C4×S3) = C3⋊C8⋊Dic3 | φ: C4×S3/Dic3 → C2 ⊆ Aut C12 | 96 | | C12.45(C4xS3) | 288,202 |
C12.46(C4×S3) = C2×C12.29D6 | φ: C4×S3/Dic3 → C2 ⊆ Aut C12 | 48 | | C12.46(C4xS3) | 288,464 |
C12.47(C4×S3) = C2×C12.31D6 | φ: C4×S3/Dic3 → C2 ⊆ Aut C12 | 48 | | C12.47(C4xS3) | 288,468 |
C12.48(C4×S3) = C62.44C23 | φ: C4×S3/Dic3 → C2 ⊆ Aut C12 | 48 | | C12.48(C4xS3) | 288,522 |
C12.49(C4×S3) = C3×C6.D8 | φ: C4×S3/Dic3 → C2 ⊆ Aut C12 | 96 | | C12.49(C4xS3) | 288,243 |
C12.50(C4×S3) = C3×C6.SD16 | φ: C4×S3/Dic3 → C2 ⊆ Aut C12 | 96 | | C12.50(C4xS3) | 288,244 |
C12.51(C4×S3) = C3×D12⋊C4 | φ: C4×S3/Dic3 → C2 ⊆ Aut C12 | 48 | 4 | C12.51(C4xS3) | 288,259 |
C12.52(C4×S3) = C3×Dic6⋊C4 | φ: C4×S3/Dic3 → C2 ⊆ Aut C12 | 96 | | C12.52(C4xS3) | 288,658 |
C12.53(C4×S3) = C3×D12.C4 | φ: C4×S3/Dic3 → C2 ⊆ Aut C12 | 48 | 4 | C12.53(C4xS3) | 288,678 |
C12.54(C4×S3) = C42⋊4D9 | φ: C4×S3/C12 → C2 ⊆ Aut C12 | 72 | 2 | C12.54(C4xS3) | 288,12 |
C12.55(C4×S3) = C36.45D4 | φ: C4×S3/C12 → C2 ⊆ Aut C12 | 288 | | C12.55(C4xS3) | 288,24 |
C12.56(C4×S3) = C2.D72 | φ: C4×S3/C12 → C2 ⊆ Aut C12 | 144 | | C12.56(C4xS3) | 288,28 |
C12.57(C4×S3) = C4×Dic18 | φ: C4×S3/C12 → C2 ⊆ Aut C12 | 288 | | C12.57(C4xS3) | 288,78 |
C12.58(C4×S3) = C4×D36 | φ: C4×S3/C12 → C2 ⊆ Aut C12 | 144 | | C12.58(C4xS3) | 288,83 |
C12.59(C4×S3) = D36.2C4 | φ: C4×S3/C12 → C2 ⊆ Aut C12 | 144 | 2 | C12.59(C4xS3) | 288,112 |
C12.60(C4×S3) = C122⋊C2 | φ: C4×S3/C12 → C2 ⊆ Aut C12 | 72 | | C12.60(C4xS3) | 288,280 |
C12.61(C4×S3) = C6.4Dic12 | φ: C4×S3/C12 → C2 ⊆ Aut C12 | 288 | | C12.61(C4xS3) | 288,291 |
C12.62(C4×S3) = C62.84D4 | φ: C4×S3/C12 → C2 ⊆ Aut C12 | 144 | | C12.62(C4xS3) | 288,296 |
C12.63(C4×S3) = C4×C32⋊4Q8 | φ: C4×S3/C12 → C2 ⊆ Aut C12 | 288 | | C12.63(C4xS3) | 288,725 |
C12.64(C4×S3) = C24.95D6 | φ: C4×S3/C12 → C2 ⊆ Aut C12 | 144 | | C12.64(C4xS3) | 288,758 |
C12.65(C4×S3) = C16×D9 | φ: C4×S3/C12 → C2 ⊆ Aut C12 | 144 | 2 | C12.65(C4xS3) | 288,4 |
C12.66(C4×S3) = C16⋊D9 | φ: C4×S3/C12 → C2 ⊆ Aut C12 | 144 | 2 | C12.66(C4xS3) | 288,5 |
C12.67(C4×S3) = C4×C9⋊C8 | φ: C4×S3/C12 → C2 ⊆ Aut C12 | 288 | | C12.67(C4xS3) | 288,9 |
C12.68(C4×S3) = C42.D9 | φ: C4×S3/C12 → C2 ⊆ Aut C12 | 288 | | C12.68(C4xS3) | 288,10 |
C12.69(C4×S3) = C8×Dic9 | φ: C4×S3/C12 → C2 ⊆ Aut C12 | 288 | | C12.69(C4xS3) | 288,21 |
C12.70(C4×S3) = C72⋊C4 | φ: C4×S3/C12 → C2 ⊆ Aut C12 | 288 | | C12.70(C4xS3) | 288,23 |
C12.71(C4×S3) = C42×D9 | φ: C4×S3/C12 → C2 ⊆ Aut C12 | 144 | | C12.71(C4xS3) | 288,81 |
C12.72(C4×S3) = C42⋊2D9 | φ: C4×S3/C12 → C2 ⊆ Aut C12 | 144 | | C12.72(C4xS3) | 288,82 |
C12.73(C4×S3) = C2×C8×D9 | φ: C4×S3/C12 → C2 ⊆ Aut C12 | 144 | | C12.73(C4xS3) | 288,110 |
C12.74(C4×S3) = C2×C8⋊D9 | φ: C4×S3/C12 → C2 ⊆ Aut C12 | 144 | | C12.74(C4xS3) | 288,111 |
C12.75(C4×S3) = C16×C3⋊S3 | φ: C4×S3/C12 → C2 ⊆ Aut C12 | 144 | | C12.75(C4xS3) | 288,272 |
C12.76(C4×S3) = C48⋊S3 | φ: C4×S3/C12 → C2 ⊆ Aut C12 | 144 | | C12.76(C4xS3) | 288,273 |
C12.77(C4×S3) = C4×C32⋊4C8 | φ: C4×S3/C12 → C2 ⊆ Aut C12 | 288 | | C12.77(C4xS3) | 288,277 |
C12.78(C4×S3) = C122.C2 | φ: C4×S3/C12 → C2 ⊆ Aut C12 | 288 | | C12.78(C4xS3) | 288,278 |
C12.79(C4×S3) = C8×C3⋊Dic3 | φ: C4×S3/C12 → C2 ⊆ Aut C12 | 288 | | C12.79(C4xS3) | 288,288 |
C12.80(C4×S3) = C24⋊Dic3 | φ: C4×S3/C12 → C2 ⊆ Aut C12 | 288 | | C12.80(C4xS3) | 288,290 |
C12.81(C4×S3) = C122⋊16C2 | φ: C4×S3/C12 → C2 ⊆ Aut C12 | 144 | | C12.81(C4xS3) | 288,729 |
C12.82(C4×S3) = C2×C8×C3⋊S3 | φ: C4×S3/C12 → C2 ⊆ Aut C12 | 144 | | C12.82(C4xS3) | 288,756 |
C12.83(C4×S3) = C2×C24⋊S3 | φ: C4×S3/C12 → C2 ⊆ Aut C12 | 144 | | C12.83(C4xS3) | 288,757 |
C12.84(C4×S3) = C3×C42⋊4S3 | φ: C4×S3/C12 → C2 ⊆ Aut C12 | 24 | 2 | C12.84(C4xS3) | 288,239 |
C12.85(C4×S3) = C3×C2.Dic12 | φ: C4×S3/C12 → C2 ⊆ Aut C12 | 96 | | C12.85(C4xS3) | 288,250 |
C12.86(C4×S3) = C3×C2.D24 | φ: C4×S3/C12 → C2 ⊆ Aut C12 | 96 | | C12.86(C4xS3) | 288,255 |
C12.87(C4×S3) = C12×Dic6 | φ: C4×S3/C12 → C2 ⊆ Aut C12 | 96 | | C12.87(C4xS3) | 288,639 |
C12.88(C4×S3) = C3×C8○D12 | φ: C4×S3/C12 → C2 ⊆ Aut C12 | 48 | 2 | C12.88(C4xS3) | 288,672 |
C12.89(C4×S3) = C12.Dic6 | φ: C4×S3/D6 → C2 ⊆ Aut C12 | 96 | | C12.89(C4xS3) | 288,221 |
C12.90(C4×S3) = C6.18D24 | φ: C4×S3/D6 → C2 ⊆ Aut C12 | 96 | | C12.90(C4xS3) | 288,223 |
C12.91(C4×S3) = C12.82D12 | φ: C4×S3/D6 → C2 ⊆ Aut C12 | 48 | 4 | C12.91(C4xS3) | 288,225 |
C12.92(C4×S3) = S3×C4.Dic3 | φ: C4×S3/D6 → C2 ⊆ Aut C12 | 48 | 4 | C12.92(C4xS3) | 288,461 |
C12.93(C4×S3) = C62.11C23 | φ: C4×S3/D6 → C2 ⊆ Aut C12 | 96 | | C12.93(C4xS3) | 288,489 |
C12.94(C4×S3) = S3×C3⋊C16 | φ: C4×S3/D6 → C2 ⊆ Aut C12 | 96 | 4 | C12.94(C4xS3) | 288,189 |
C12.95(C4×S3) = C24.61D6 | φ: C4×S3/D6 → C2 ⊆ Aut C12 | 96 | 4 | C12.95(C4xS3) | 288,191 |
C12.96(C4×S3) = Dic3×C3⋊C8 | φ: C4×S3/D6 → C2 ⊆ Aut C12 | 96 | | C12.96(C4xS3) | 288,200 |
C12.97(C4×S3) = C6.(S3×C8) | φ: C4×S3/D6 → C2 ⊆ Aut C12 | 96 | | C12.97(C4xS3) | 288,201 |
C12.98(C4×S3) = C2.Dic32 | φ: C4×S3/D6 → C2 ⊆ Aut C12 | 96 | | C12.98(C4xS3) | 288,203 |
C12.99(C4×S3) = C2×S3×C3⋊C8 | φ: C4×S3/D6 → C2 ⊆ Aut C12 | 96 | | C12.99(C4xS3) | 288,460 |
C12.100(C4×S3) = C2×D6.Dic3 | φ: C4×S3/D6 → C2 ⊆ Aut C12 | 96 | | C12.100(C4xS3) | 288,467 |
C12.101(C4×S3) = C62.25C23 | φ: C4×S3/D6 → C2 ⊆ Aut C12 | 96 | | C12.101(C4xS3) | 288,503 |
C12.102(C4×S3) = C3×C6.Q16 | φ: C4×S3/D6 → C2 ⊆ Aut C12 | 96 | | C12.102(C4xS3) | 288,241 |
C12.103(C4×S3) = C3×C12.Q8 | φ: C4×S3/D6 → C2 ⊆ Aut C12 | 96 | | C12.103(C4xS3) | 288,242 |
C12.104(C4×S3) = C3×C12.53D4 | φ: C4×S3/D6 → C2 ⊆ Aut C12 | 48 | 4 | C12.104(C4xS3) | 288,256 |
C12.105(C4×S3) = C3×C4⋊C4⋊7S3 | φ: C4×S3/D6 → C2 ⊆ Aut C12 | 96 | | C12.105(C4xS3) | 288,663 |
C12.106(C4×S3) = C3×S3×M4(2) | φ: C4×S3/D6 → C2 ⊆ Aut C12 | 48 | 4 | C12.106(C4xS3) | 288,677 |
C12.107(C4×S3) = S3×C48 | central extension (φ=1) | 96 | 2 | C12.107(C4xS3) | 288,231 |
C12.108(C4×S3) = C3×D6.C8 | central extension (φ=1) | 96 | 2 | C12.108(C4xS3) | 288,232 |
C12.109(C4×S3) = C12×C3⋊C8 | central extension (φ=1) | 96 | | C12.109(C4xS3) | 288,236 |
C12.110(C4×S3) = C3×C42.S3 | central extension (φ=1) | 96 | | C12.110(C4xS3) | 288,237 |
C12.111(C4×S3) = Dic3×C24 | central extension (φ=1) | 96 | | C12.111(C4xS3) | 288,247 |
C12.112(C4×S3) = C3×C24⋊C4 | central extension (φ=1) | 96 | | C12.112(C4xS3) | 288,249 |
C12.113(C4×S3) = C3×C42⋊2S3 | central extension (φ=1) | 96 | | C12.113(C4xS3) | 288,643 |
C12.114(C4×S3) = S3×C2×C24 | central extension (φ=1) | 96 | | C12.114(C4xS3) | 288,670 |
C12.115(C4×S3) = C6×C8⋊S3 | central extension (φ=1) | 96 | | C12.115(C4xS3) | 288,671 |