Copied to
clipboard

?

G = C10.502+ (1+4)order 320 = 26·5

50th non-split extension by C10 of 2+ (1+4) acting via 2+ (1+4)/C2×D4=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C10.502+ (1+4), C10.752- (1+4), C20⋊Q823C2, C4⋊C4.94D10, (C2×Dic5)⋊4Q8, C22⋊Q8.8D5, C22.6(Q8×D5), (C2×Q8).74D10, Dic5.4(C2×Q8), (C2×C20).49C23, C22⋊C4.53D10, Dic5⋊Q812C2, C10.33(C22×Q8), (C2×C10).167C24, (C22×C4).232D10, C4⋊Dic5.47C22, C2.52(D46D10), Dic5.Q816C2, C20.48D4.19C2, (Q8×C10).102C22, C23.185(C22×D5), C22.188(C23×D5), C23.D5.31C22, (C22×C10).195C23, (C22×C20).314C22, Dic5.14D4.3C2, C53(C23.41C23), (C2×Dic5).241C23, (C4×Dic5).109C22, C23.11D10.2C2, C2.33(D4.10D10), (C2×Dic10).164C22, C10.D4.161C22, (C22×Dic5).117C22, C2.16(C2×Q8×D5), (C2×C10).6(C2×Q8), (C5×C22⋊Q8).8C2, (C5×C4⋊C4).153C22, (C2×C4).181(C22×D5), (C2×C10.D4).25C2, (C5×C22⋊C4).22C22, SmallGroup(320,1295)

Series: Derived Chief Lower central Upper central

C1C2×C10 — C10.502+ (1+4)
C1C5C10C2×C10C2×Dic5C22×Dic5C23.11D10 — C10.502+ (1+4)
C5C2×C10 — C10.502+ (1+4)

Subgroups: 622 in 206 conjugacy classes, 103 normal (31 characteristic)
C1, C2 [×3], C2 [×2], C4 [×16], C22, C22 [×2], C22 [×2], C5, C2×C4 [×2], C2×C4 [×4], C2×C4 [×14], Q8 [×4], C23, C10 [×3], C10 [×2], C42 [×4], C22⋊C4 [×2], C22⋊C4 [×2], C4⋊C4, C4⋊C4 [×2], C4⋊C4 [×17], C22×C4, C22×C4 [×2], C2×Q8, C2×Q8 [×3], Dic5 [×4], Dic5 [×6], C20 [×6], C2×C10, C2×C10 [×2], C2×C10 [×2], C2×C4⋊C4, C42⋊C2 [×2], C22⋊Q8, C22⋊Q8 [×3], C42.C2 [×4], C4⋊Q8 [×4], Dic10 [×3], C2×Dic5 [×12], C2×Dic5, C2×C20 [×2], C2×C20 [×4], C2×C20, C5×Q8, C22×C10, C23.41C23, C4×Dic5 [×4], C10.D4 [×14], C4⋊Dic5, C4⋊Dic5 [×2], C23.D5 [×2], C5×C22⋊C4 [×2], C5×C4⋊C4, C5×C4⋊C4 [×2], C2×Dic10, C2×Dic10 [×2], C22×Dic5 [×2], C22×C20, Q8×C10, C23.11D10 [×2], Dic5.14D4 [×2], C20⋊Q8 [×2], Dic5.Q8 [×4], C2×C10.D4, C20.48D4, Dic5⋊Q8 [×2], C5×C22⋊Q8, C10.502+ (1+4)

Quotients:
C1, C2 [×15], C22 [×35], Q8 [×4], C23 [×15], D5, C2×Q8 [×6], C24, D10 [×7], C22×Q8, 2+ (1+4), 2- (1+4), C22×D5 [×7], C23.41C23, Q8×D5 [×2], C23×D5, D46D10, C2×Q8×D5, D4.10D10, C10.502+ (1+4)

Generators and relations
 G = < a,b,c,d,e | a10=b4=e2=1, c2=a5, d2=a5b2, bab-1=a-1, ac=ca, ad=da, ae=ea, cbc-1=b-1, bd=db, be=eb, dcd-1=a5c, ce=ec, ede=b2d >

Smallest permutation representation
On 160 points
Generators in S160
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160)
(1 105 30 98)(2 104 21 97)(3 103 22 96)(4 102 23 95)(5 101 24 94)(6 110 25 93)(7 109 26 92)(8 108 27 91)(9 107 28 100)(10 106 29 99)(11 90 159 71)(12 89 160 80)(13 88 151 79)(14 87 152 78)(15 86 153 77)(16 85 154 76)(17 84 155 75)(18 83 156 74)(19 82 157 73)(20 81 158 72)(31 126 49 119)(32 125 50 118)(33 124 41 117)(34 123 42 116)(35 122 43 115)(36 121 44 114)(37 130 45 113)(38 129 46 112)(39 128 47 111)(40 127 48 120)(51 146 69 139)(52 145 70 138)(53 144 61 137)(54 143 62 136)(55 142 63 135)(56 141 64 134)(57 150 65 133)(58 149 66 132)(59 148 67 131)(60 147 68 140)
(1 37 6 32)(2 38 7 33)(3 39 8 34)(4 40 9 35)(5 31 10 36)(11 134 16 139)(12 135 17 140)(13 136 18 131)(14 137 19 132)(15 138 20 133)(21 46 26 41)(22 47 27 42)(23 48 28 43)(24 49 29 44)(25 50 30 45)(51 71 56 76)(52 72 57 77)(53 73 58 78)(54 74 59 79)(55 75 60 80)(61 82 66 87)(62 83 67 88)(63 84 68 89)(64 85 69 90)(65 86 70 81)(91 123 96 128)(92 124 97 129)(93 125 98 130)(94 126 99 121)(95 127 100 122)(101 119 106 114)(102 120 107 115)(103 111 108 116)(104 112 109 117)(105 113 110 118)(141 154 146 159)(142 155 147 160)(143 156 148 151)(144 157 149 152)(145 158 150 153)
(1 65 25 52)(2 66 26 53)(3 67 27 54)(4 68 28 55)(5 69 29 56)(6 70 30 57)(7 61 21 58)(8 62 22 59)(9 63 23 60)(10 64 24 51)(11 126 154 114)(12 127 155 115)(13 128 156 116)(14 129 157 117)(15 130 158 118)(16 121 159 119)(17 122 160 120)(18 123 151 111)(19 124 152 112)(20 125 153 113)(31 85 44 71)(32 86 45 72)(33 87 46 73)(34 88 47 74)(35 89 48 75)(36 90 49 76)(37 81 50 77)(38 82 41 78)(39 83 42 79)(40 84 43 80)(91 143 103 131)(92 144 104 132)(93 145 105 133)(94 146 106 134)(95 147 107 135)(96 148 108 136)(97 149 109 137)(98 150 110 138)(99 141 101 139)(100 142 102 140)
(11 159)(12 160)(13 151)(14 152)(15 153)(16 154)(17 155)(18 156)(19 157)(20 158)(51 69)(52 70)(53 61)(54 62)(55 63)(56 64)(57 65)(58 66)(59 67)(60 68)(71 90)(72 81)(73 82)(74 83)(75 84)(76 85)(77 86)(78 87)(79 88)(80 89)(131 148)(132 149)(133 150)(134 141)(135 142)(136 143)(137 144)(138 145)(139 146)(140 147)

G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,105,30,98)(2,104,21,97)(3,103,22,96)(4,102,23,95)(5,101,24,94)(6,110,25,93)(7,109,26,92)(8,108,27,91)(9,107,28,100)(10,106,29,99)(11,90,159,71)(12,89,160,80)(13,88,151,79)(14,87,152,78)(15,86,153,77)(16,85,154,76)(17,84,155,75)(18,83,156,74)(19,82,157,73)(20,81,158,72)(31,126,49,119)(32,125,50,118)(33,124,41,117)(34,123,42,116)(35,122,43,115)(36,121,44,114)(37,130,45,113)(38,129,46,112)(39,128,47,111)(40,127,48,120)(51,146,69,139)(52,145,70,138)(53,144,61,137)(54,143,62,136)(55,142,63,135)(56,141,64,134)(57,150,65,133)(58,149,66,132)(59,148,67,131)(60,147,68,140), (1,37,6,32)(2,38,7,33)(3,39,8,34)(4,40,9,35)(5,31,10,36)(11,134,16,139)(12,135,17,140)(13,136,18,131)(14,137,19,132)(15,138,20,133)(21,46,26,41)(22,47,27,42)(23,48,28,43)(24,49,29,44)(25,50,30,45)(51,71,56,76)(52,72,57,77)(53,73,58,78)(54,74,59,79)(55,75,60,80)(61,82,66,87)(62,83,67,88)(63,84,68,89)(64,85,69,90)(65,86,70,81)(91,123,96,128)(92,124,97,129)(93,125,98,130)(94,126,99,121)(95,127,100,122)(101,119,106,114)(102,120,107,115)(103,111,108,116)(104,112,109,117)(105,113,110,118)(141,154,146,159)(142,155,147,160)(143,156,148,151)(144,157,149,152)(145,158,150,153), (1,65,25,52)(2,66,26,53)(3,67,27,54)(4,68,28,55)(5,69,29,56)(6,70,30,57)(7,61,21,58)(8,62,22,59)(9,63,23,60)(10,64,24,51)(11,126,154,114)(12,127,155,115)(13,128,156,116)(14,129,157,117)(15,130,158,118)(16,121,159,119)(17,122,160,120)(18,123,151,111)(19,124,152,112)(20,125,153,113)(31,85,44,71)(32,86,45,72)(33,87,46,73)(34,88,47,74)(35,89,48,75)(36,90,49,76)(37,81,50,77)(38,82,41,78)(39,83,42,79)(40,84,43,80)(91,143,103,131)(92,144,104,132)(93,145,105,133)(94,146,106,134)(95,147,107,135)(96,148,108,136)(97,149,109,137)(98,150,110,138)(99,141,101,139)(100,142,102,140), (11,159)(12,160)(13,151)(14,152)(15,153)(16,154)(17,155)(18,156)(19,157)(20,158)(51,69)(52,70)(53,61)(54,62)(55,63)(56,64)(57,65)(58,66)(59,67)(60,68)(71,90)(72,81)(73,82)(74,83)(75,84)(76,85)(77,86)(78,87)(79,88)(80,89)(131,148)(132,149)(133,150)(134,141)(135,142)(136,143)(137,144)(138,145)(139,146)(140,147)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,105,30,98)(2,104,21,97)(3,103,22,96)(4,102,23,95)(5,101,24,94)(6,110,25,93)(7,109,26,92)(8,108,27,91)(9,107,28,100)(10,106,29,99)(11,90,159,71)(12,89,160,80)(13,88,151,79)(14,87,152,78)(15,86,153,77)(16,85,154,76)(17,84,155,75)(18,83,156,74)(19,82,157,73)(20,81,158,72)(31,126,49,119)(32,125,50,118)(33,124,41,117)(34,123,42,116)(35,122,43,115)(36,121,44,114)(37,130,45,113)(38,129,46,112)(39,128,47,111)(40,127,48,120)(51,146,69,139)(52,145,70,138)(53,144,61,137)(54,143,62,136)(55,142,63,135)(56,141,64,134)(57,150,65,133)(58,149,66,132)(59,148,67,131)(60,147,68,140), (1,37,6,32)(2,38,7,33)(3,39,8,34)(4,40,9,35)(5,31,10,36)(11,134,16,139)(12,135,17,140)(13,136,18,131)(14,137,19,132)(15,138,20,133)(21,46,26,41)(22,47,27,42)(23,48,28,43)(24,49,29,44)(25,50,30,45)(51,71,56,76)(52,72,57,77)(53,73,58,78)(54,74,59,79)(55,75,60,80)(61,82,66,87)(62,83,67,88)(63,84,68,89)(64,85,69,90)(65,86,70,81)(91,123,96,128)(92,124,97,129)(93,125,98,130)(94,126,99,121)(95,127,100,122)(101,119,106,114)(102,120,107,115)(103,111,108,116)(104,112,109,117)(105,113,110,118)(141,154,146,159)(142,155,147,160)(143,156,148,151)(144,157,149,152)(145,158,150,153), (1,65,25,52)(2,66,26,53)(3,67,27,54)(4,68,28,55)(5,69,29,56)(6,70,30,57)(7,61,21,58)(8,62,22,59)(9,63,23,60)(10,64,24,51)(11,126,154,114)(12,127,155,115)(13,128,156,116)(14,129,157,117)(15,130,158,118)(16,121,159,119)(17,122,160,120)(18,123,151,111)(19,124,152,112)(20,125,153,113)(31,85,44,71)(32,86,45,72)(33,87,46,73)(34,88,47,74)(35,89,48,75)(36,90,49,76)(37,81,50,77)(38,82,41,78)(39,83,42,79)(40,84,43,80)(91,143,103,131)(92,144,104,132)(93,145,105,133)(94,146,106,134)(95,147,107,135)(96,148,108,136)(97,149,109,137)(98,150,110,138)(99,141,101,139)(100,142,102,140), (11,159)(12,160)(13,151)(14,152)(15,153)(16,154)(17,155)(18,156)(19,157)(20,158)(51,69)(52,70)(53,61)(54,62)(55,63)(56,64)(57,65)(58,66)(59,67)(60,68)(71,90)(72,81)(73,82)(74,83)(75,84)(76,85)(77,86)(78,87)(79,88)(80,89)(131,148)(132,149)(133,150)(134,141)(135,142)(136,143)(137,144)(138,145)(139,146)(140,147) );

G=PermutationGroup([(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160)], [(1,105,30,98),(2,104,21,97),(3,103,22,96),(4,102,23,95),(5,101,24,94),(6,110,25,93),(7,109,26,92),(8,108,27,91),(9,107,28,100),(10,106,29,99),(11,90,159,71),(12,89,160,80),(13,88,151,79),(14,87,152,78),(15,86,153,77),(16,85,154,76),(17,84,155,75),(18,83,156,74),(19,82,157,73),(20,81,158,72),(31,126,49,119),(32,125,50,118),(33,124,41,117),(34,123,42,116),(35,122,43,115),(36,121,44,114),(37,130,45,113),(38,129,46,112),(39,128,47,111),(40,127,48,120),(51,146,69,139),(52,145,70,138),(53,144,61,137),(54,143,62,136),(55,142,63,135),(56,141,64,134),(57,150,65,133),(58,149,66,132),(59,148,67,131),(60,147,68,140)], [(1,37,6,32),(2,38,7,33),(3,39,8,34),(4,40,9,35),(5,31,10,36),(11,134,16,139),(12,135,17,140),(13,136,18,131),(14,137,19,132),(15,138,20,133),(21,46,26,41),(22,47,27,42),(23,48,28,43),(24,49,29,44),(25,50,30,45),(51,71,56,76),(52,72,57,77),(53,73,58,78),(54,74,59,79),(55,75,60,80),(61,82,66,87),(62,83,67,88),(63,84,68,89),(64,85,69,90),(65,86,70,81),(91,123,96,128),(92,124,97,129),(93,125,98,130),(94,126,99,121),(95,127,100,122),(101,119,106,114),(102,120,107,115),(103,111,108,116),(104,112,109,117),(105,113,110,118),(141,154,146,159),(142,155,147,160),(143,156,148,151),(144,157,149,152),(145,158,150,153)], [(1,65,25,52),(2,66,26,53),(3,67,27,54),(4,68,28,55),(5,69,29,56),(6,70,30,57),(7,61,21,58),(8,62,22,59),(9,63,23,60),(10,64,24,51),(11,126,154,114),(12,127,155,115),(13,128,156,116),(14,129,157,117),(15,130,158,118),(16,121,159,119),(17,122,160,120),(18,123,151,111),(19,124,152,112),(20,125,153,113),(31,85,44,71),(32,86,45,72),(33,87,46,73),(34,88,47,74),(35,89,48,75),(36,90,49,76),(37,81,50,77),(38,82,41,78),(39,83,42,79),(40,84,43,80),(91,143,103,131),(92,144,104,132),(93,145,105,133),(94,146,106,134),(95,147,107,135),(96,148,108,136),(97,149,109,137),(98,150,110,138),(99,141,101,139),(100,142,102,140)], [(11,159),(12,160),(13,151),(14,152),(15,153),(16,154),(17,155),(18,156),(19,157),(20,158),(51,69),(52,70),(53,61),(54,62),(55,63),(56,64),(57,65),(58,66),(59,67),(60,68),(71,90),(72,81),(73,82),(74,83),(75,84),(76,85),(77,86),(78,87),(79,88),(80,89),(131,148),(132,149),(133,150),(134,141),(135,142),(136,143),(137,144),(138,145),(139,146),(140,147)])

Matrix representation G ⊆ GL6(𝔽41)

4000000
0400000
0013400
0073400
0000134
0000734
,
100000
010000
00244000
0031700
00202440
001439317
,
1370000
21400000
0030900
00321100
0027151132
00269930
,
32360000
090000
00222390
003936039
0014171939
00241025
,
4000000
0400000
001000
000100
00222400
003936040

G:=sub<GL(6,GF(41))| [40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,7,0,0,0,0,34,34,0,0,0,0,0,0,1,7,0,0,0,0,34,34],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,24,3,2,14,0,0,40,17,0,39,0,0,0,0,24,3,0,0,0,0,40,17],[1,21,0,0,0,0,37,40,0,0,0,0,0,0,30,32,27,26,0,0,9,11,15,9,0,0,0,0,11,9,0,0,0,0,32,30],[32,0,0,0,0,0,36,9,0,0,0,0,0,0,22,39,14,24,0,0,2,36,17,10,0,0,39,0,19,2,0,0,0,39,39,5],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,22,39,0,0,0,1,2,36,0,0,0,0,40,0,0,0,0,0,0,40] >;

50 conjugacy classes

class 1 2A2B2C2D2E4A···4F4G4H4I4J4K···4P5A5B10A···10F10G10H10I10J20A···20H20I···20P
order1222224···444444···45510···101010101020···2020···20
size1111224···41010101020···20222···244444···48···8

50 irreducible representations

dim11111111122222244444
type+++++++++-++++++---
imageC1C2C2C2C2C2C2C2C2Q8D5D10D10D10D102+ (1+4)2- (1+4)Q8×D5D46D10D4.10D10
kernelC10.502+ (1+4)C23.11D10Dic5.14D4C20⋊Q8Dic5.Q8C2×C10.D4C20.48D4Dic5⋊Q8C5×C22⋊Q8C2×Dic5C22⋊Q8C22⋊C4C4⋊C4C22×C4C2×Q8C10C10C22C2C2
# reps12224112142462211444

In GAP, Magma, Sage, TeX

C_{10}._{50}2_+^{(1+4)}
% in TeX

G:=Group("C10.50ES+(2,2)");
// GroupNames label

G:=SmallGroup(320,1295);
// by ID

G=gap.SmallGroup(320,1295);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,224,387,100,1123,185,80,12550]);
// Polycyclic

G:=Group<a,b,c,d,e|a^10=b^4=e^2=1,c^2=a^5,d^2=a^5*b^2,b*a*b^-1=a^-1,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c^-1=b^-1,b*d=d*b,b*e=e*b,d*c*d^-1=a^5*c,c*e=e*c,e*d*e=b^2*d>;
// generators/relations

׿
×
𝔽