metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C20⋊8M4(2), Dic5⋊9M4(2), C20⋊C8⋊15C2, C4⋊2(C22.F5), C22.7(C4⋊F5), (C22×C4).22F5, C23.45(C2×F5), Dic5⋊C8⋊7C2, C5⋊3(C4⋊M4(2)), (C22×C20).24C4, (C4×Dic5).38C4, Dic5.37(C2×D4), Dic5.19(C2×Q8), (C2×Dic5).38Q8, Dic5.36(C4⋊C4), (C2×Dic5).180D4, C10.28(C2×M4(2)), C22.87(C22×F5), C2.18(D5⋊M4(2)), (C22×Dic5).34C4, (C2×Dic5).349C23, (C4×Dic5).348C22, (C22×Dic5).277C22, C2.22(C2×C4⋊F5), C10.21(C2×C4⋊C4), (C2×C5⋊C8).8C22, (C2×C4).144(C2×F5), (C2×C4×Dic5).47C2, (C2×C10).27(C4⋊C4), (C2×C20).111(C2×C4), C2.7(C2×C22.F5), (C2×C22.F5).5C2, (C22×C10).65(C2×C4), (C2×C10).65(C22×C4), (C2×Dic5).187(C2×C4), SmallGroup(320,1096)
Series: Derived ►Chief ►Lower central ►Upper central
| C1 — C5 — C10 — Dic5 — C2×Dic5 — C2×C5⋊C8 — C20⋊C8 — C20⋊8M4(2) |
Subgroups: 378 in 126 conjugacy classes, 58 normal (32 characteristic)
C1, C2 [×3], C2 [×2], C4 [×2], C4 [×8], C22, C22 [×2], C22 [×2], C5, C8 [×4], C2×C4 [×2], C2×C4 [×12], C23, C10 [×3], C10 [×2], C42 [×4], C2×C8 [×4], M4(2) [×4], C22×C4, C22×C4 [×2], Dic5 [×2], Dic5 [×4], Dic5, C20 [×2], C20, C2×C10, C2×C10 [×2], C2×C10 [×2], C4⋊C8 [×4], C2×C42, C2×M4(2) [×2], C5⋊C8 [×4], C2×Dic5 [×4], C2×Dic5 [×4], C2×Dic5 [×2], C2×C20 [×2], C2×C20 [×2], C22×C10, C4⋊M4(2), C4×Dic5 [×4], C2×C5⋊C8 [×4], C22.F5 [×4], C22×Dic5 [×2], C22×C20, C20⋊C8 [×2], Dic5⋊C8 [×2], C2×C4×Dic5, C2×C22.F5 [×2], C20⋊8M4(2)
Quotients:
C1, C2 [×7], C4 [×4], C22 [×7], C2×C4 [×6], D4 [×2], Q8 [×2], C23, C4⋊C4 [×4], M4(2) [×4], C22×C4, C2×D4, C2×Q8, F5, C2×C4⋊C4, C2×M4(2) [×2], C2×F5 [×3], C4⋊M4(2), C4⋊F5 [×2], C22.F5 [×2], C22×F5, D5⋊M4(2), C2×C4⋊F5, C2×C22.F5, C20⋊8M4(2)
Generators and relations
G = < a,b,c | a20=b8=c2=1, bab-1=a3, ac=ca, cbc=b5 >
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 61 46 104 33 100 126 145)(2 68 55 107 34 87 135 148)(3 75 44 110 35 94 124 151)(4 62 53 113 36 81 133 154)(5 69 42 116 37 88 122 157)(6 76 51 119 38 95 131 160)(7 63 60 102 39 82 140 143)(8 70 49 105 40 89 129 146)(9 77 58 108 21 96 138 149)(10 64 47 111 22 83 127 152)(11 71 56 114 23 90 136 155)(12 78 45 117 24 97 125 158)(13 65 54 120 25 84 134 141)(14 72 43 103 26 91 123 144)(15 79 52 106 27 98 132 147)(16 66 41 109 28 85 121 150)(17 73 50 112 29 92 130 153)(18 80 59 115 30 99 139 156)(19 67 48 118 31 86 128 159)(20 74 57 101 32 93 137 142)
(61 100)(62 81)(63 82)(64 83)(65 84)(66 85)(67 86)(68 87)(69 88)(70 89)(71 90)(72 91)(73 92)(74 93)(75 94)(76 95)(77 96)(78 97)(79 98)(80 99)(101 142)(102 143)(103 144)(104 145)(105 146)(106 147)(107 148)(108 149)(109 150)(110 151)(111 152)(112 153)(113 154)(114 155)(115 156)(116 157)(117 158)(118 159)(119 160)(120 141)
G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,61,46,104,33,100,126,145)(2,68,55,107,34,87,135,148)(3,75,44,110,35,94,124,151)(4,62,53,113,36,81,133,154)(5,69,42,116,37,88,122,157)(6,76,51,119,38,95,131,160)(7,63,60,102,39,82,140,143)(8,70,49,105,40,89,129,146)(9,77,58,108,21,96,138,149)(10,64,47,111,22,83,127,152)(11,71,56,114,23,90,136,155)(12,78,45,117,24,97,125,158)(13,65,54,120,25,84,134,141)(14,72,43,103,26,91,123,144)(15,79,52,106,27,98,132,147)(16,66,41,109,28,85,121,150)(17,73,50,112,29,92,130,153)(18,80,59,115,30,99,139,156)(19,67,48,118,31,86,128,159)(20,74,57,101,32,93,137,142), (61,100)(62,81)(63,82)(64,83)(65,84)(66,85)(67,86)(68,87)(69,88)(70,89)(71,90)(72,91)(73,92)(74,93)(75,94)(76,95)(77,96)(78,97)(79,98)(80,99)(101,142)(102,143)(103,144)(104,145)(105,146)(106,147)(107,148)(108,149)(109,150)(110,151)(111,152)(112,153)(113,154)(114,155)(115,156)(116,157)(117,158)(118,159)(119,160)(120,141)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,61,46,104,33,100,126,145)(2,68,55,107,34,87,135,148)(3,75,44,110,35,94,124,151)(4,62,53,113,36,81,133,154)(5,69,42,116,37,88,122,157)(6,76,51,119,38,95,131,160)(7,63,60,102,39,82,140,143)(8,70,49,105,40,89,129,146)(9,77,58,108,21,96,138,149)(10,64,47,111,22,83,127,152)(11,71,56,114,23,90,136,155)(12,78,45,117,24,97,125,158)(13,65,54,120,25,84,134,141)(14,72,43,103,26,91,123,144)(15,79,52,106,27,98,132,147)(16,66,41,109,28,85,121,150)(17,73,50,112,29,92,130,153)(18,80,59,115,30,99,139,156)(19,67,48,118,31,86,128,159)(20,74,57,101,32,93,137,142), (61,100)(62,81)(63,82)(64,83)(65,84)(66,85)(67,86)(68,87)(69,88)(70,89)(71,90)(72,91)(73,92)(74,93)(75,94)(76,95)(77,96)(78,97)(79,98)(80,99)(101,142)(102,143)(103,144)(104,145)(105,146)(106,147)(107,148)(108,149)(109,150)(110,151)(111,152)(112,153)(113,154)(114,155)(115,156)(116,157)(117,158)(118,159)(119,160)(120,141) );
G=PermutationGroup([(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,61,46,104,33,100,126,145),(2,68,55,107,34,87,135,148),(3,75,44,110,35,94,124,151),(4,62,53,113,36,81,133,154),(5,69,42,116,37,88,122,157),(6,76,51,119,38,95,131,160),(7,63,60,102,39,82,140,143),(8,70,49,105,40,89,129,146),(9,77,58,108,21,96,138,149),(10,64,47,111,22,83,127,152),(11,71,56,114,23,90,136,155),(12,78,45,117,24,97,125,158),(13,65,54,120,25,84,134,141),(14,72,43,103,26,91,123,144),(15,79,52,106,27,98,132,147),(16,66,41,109,28,85,121,150),(17,73,50,112,29,92,130,153),(18,80,59,115,30,99,139,156),(19,67,48,118,31,86,128,159),(20,74,57,101,32,93,137,142)], [(61,100),(62,81),(63,82),(64,83),(65,84),(66,85),(67,86),(68,87),(69,88),(70,89),(71,90),(72,91),(73,92),(74,93),(75,94),(76,95),(77,96),(78,97),(79,98),(80,99),(101,142),(102,143),(103,144),(104,145),(105,146),(106,147),(107,148),(108,149),(109,150),(110,151),(111,152),(112,153),(113,154),(114,155),(115,156),(116,157),(117,158),(118,159),(119,160),(120,141)])
Matrix representation ►G ⊆ GL6(𝔽41)
| 7 | 2 | 0 | 0 | 0 | 0 |
| 16 | 34 | 0 | 0 | 0 | 0 |
| 0 | 0 | 28 | 9 | 9 | 3 |
| 0 | 0 | 32 | 0 | 39 | 4 |
| 0 | 0 | 0 | 0 | 28 | 28 |
| 0 | 0 | 0 | 0 | 13 | 32 |
| 0 | 35 | 0 | 0 | 0 | 0 |
| 7 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 38 | 14 | 31 | 17 |
| 0 | 0 | 37 | 33 | 28 | 0 |
| 0 | 0 | 13 | 8 | 0 | 28 |
| 0 | 0 | 4 | 28 | 3 | 11 |
| 1 | 0 | 0 | 0 | 0 | 0 |
| 0 | 1 | 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 | 29 | 20 |
| 0 | 0 | 0 | 1 | 40 | 36 |
| 0 | 0 | 0 | 0 | 40 | 0 |
| 0 | 0 | 0 | 0 | 0 | 40 |
G:=sub<GL(6,GF(41))| [7,16,0,0,0,0,2,34,0,0,0,0,0,0,28,32,0,0,0,0,9,0,0,0,0,0,9,39,28,13,0,0,3,4,28,32],[0,7,0,0,0,0,35,0,0,0,0,0,0,0,38,37,13,4,0,0,14,33,8,28,0,0,31,28,0,3,0,0,17,0,28,11],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,29,40,40,0,0,0,20,36,0,40] >;
44 conjugacy classes
| class | 1 | 2A | 2B | 2C | 2D | 2E | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | ··· | 4N | 5 | 8A | ··· | 8H | 10A | ··· | 10G | 20A | ··· | 20H |
| order | 1 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 5 | 8 | ··· | 8 | 10 | ··· | 10 | 20 | ··· | 20 |
| size | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 5 | 5 | 5 | 5 | 10 | ··· | 10 | 4 | 20 | ··· | 20 | 4 | ··· | 4 | 4 | ··· | 4 |
44 irreducible representations
| dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 |
| type | + | + | + | + | + | + | - | + | + | + | - | |||||||
| image | C1 | C2 | C2 | C2 | C2 | C4 | C4 | C4 | D4 | Q8 | M4(2) | M4(2) | F5 | C2×F5 | C2×F5 | C22.F5 | C4⋊F5 | D5⋊M4(2) |
| kernel | C20⋊8M4(2) | C20⋊C8 | Dic5⋊C8 | C2×C4×Dic5 | C2×C22.F5 | C4×Dic5 | C22×Dic5 | C22×C20 | C2×Dic5 | C2×Dic5 | Dic5 | C20 | C22×C4 | C2×C4 | C23 | C4 | C22 | C2 |
| # reps | 1 | 2 | 2 | 1 | 2 | 4 | 2 | 2 | 2 | 2 | 4 | 4 | 1 | 2 | 1 | 4 | 4 | 4 |
In GAP, Magma, Sage, TeX
C_{20}\rtimes_8M_{4(2)} % in TeX
G:=Group("C20:8M4(2)"); // GroupNames label
G:=SmallGroup(320,1096);
// by ID
G=gap.SmallGroup(320,1096);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,56,253,120,758,136,6278,1595]);
// Polycyclic
G:=Group<a,b,c|a^20=b^8=c^2=1,b*a*b^-1=a^3,a*c=c*a,c*b*c=b^5>;
// generators/relations