Copied to
clipboard

?

G = C2×C20.17D4order 320 = 26·5

Direct product of C2 and C20.17D4

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C2×C20.17D4, C24.37D10, C20.251(C2×D4), (C2×C20).209D4, (C2×D4).229D10, C103(C4.4D4), (C22×D4).11D5, (C2×C20).540C23, (C2×C10).292C24, (C4×Dic5)⋊67C22, (C22×C4).378D10, C10.140(C22×D4), C23.D558C22, (C22×Dic10)⋊20C2, (C2×Dic10)⋊67C22, (D4×C10).269C22, (C23×C10).74C22, C23.134(C22×D5), C22.306(C23×D5), C22.78(D42D5), (C22×C10).228C23, (C22×C20).273C22, (C2×Dic5).292C23, (C22×Dic5).254C22, (D4×C2×C10).8C2, C54(C2×C4.4D4), (C2×C4×Dic5)⋊11C2, C4.23(C2×C5⋊D4), C10.104(C2×C4○D4), (C2×C10).579(C2×D4), C2.68(C2×D42D5), (C2×C23.D5)⋊25C2, C2.13(C22×C5⋊D4), (C2×C4).153(C5⋊D4), (C2×C4).623(C22×D5), C22.109(C2×C5⋊D4), (C2×C10).176(C4○D4), SmallGroup(320,1469)

Series: Derived Chief Lower central Upper central

C1C2×C10 — C2×C20.17D4
C1C5C10C2×C10C2×Dic5C22×Dic5C2×C4×Dic5 — C2×C20.17D4
C5C2×C10 — C2×C20.17D4

Subgroups: 958 in 330 conjugacy classes, 127 normal (15 characteristic)
C1, C2, C2 [×6], C2 [×4], C4 [×4], C4 [×8], C22, C22 [×6], C22 [×20], C5, C2×C4 [×6], C2×C4 [×16], D4 [×8], Q8 [×8], C23, C23 [×4], C23 [×12], C10, C10 [×6], C10 [×4], C42 [×4], C22⋊C4 [×16], C22×C4, C22×C4 [×4], C2×D4 [×4], C2×D4 [×4], C2×Q8 [×8], C24 [×2], Dic5 [×8], C20 [×4], C2×C10, C2×C10 [×6], C2×C10 [×20], C2×C42, C2×C22⋊C4 [×4], C4.4D4 [×8], C22×D4, C22×Q8, Dic10 [×8], C2×Dic5 [×8], C2×Dic5 [×8], C2×C20 [×6], C5×D4 [×8], C22×C10, C22×C10 [×4], C22×C10 [×12], C2×C4.4D4, C4×Dic5 [×4], C23.D5 [×16], C2×Dic10 [×4], C2×Dic10 [×4], C22×Dic5 [×4], C22×C20, D4×C10 [×4], D4×C10 [×4], C23×C10 [×2], C2×C4×Dic5, C20.17D4 [×8], C2×C23.D5 [×4], C22×Dic10, D4×C2×C10, C2×C20.17D4

Quotients:
C1, C2 [×15], C22 [×35], D4 [×4], C23 [×15], D5, C2×D4 [×6], C4○D4 [×4], C24, D10 [×7], C4.4D4 [×4], C22×D4, C2×C4○D4 [×2], C5⋊D4 [×4], C22×D5 [×7], C2×C4.4D4, D42D5 [×4], C2×C5⋊D4 [×6], C23×D5, C20.17D4 [×4], C2×D42D5 [×2], C22×C5⋊D4, C2×C20.17D4

Generators and relations
 G = < a,b,c,d | a2=b20=c4=1, d2=b10, ab=ba, ac=ca, ad=da, cbc-1=b9, dbd-1=b-1, dcd-1=b10c-1 >

Smallest permutation representation
On 160 points
Generators in S160
(1 113)(2 114)(3 115)(4 116)(5 117)(6 118)(7 119)(8 120)(9 101)(10 102)(11 103)(12 104)(13 105)(14 106)(15 107)(16 108)(17 109)(18 110)(19 111)(20 112)(21 138)(22 139)(23 140)(24 121)(25 122)(26 123)(27 124)(28 125)(29 126)(30 127)(31 128)(32 129)(33 130)(34 131)(35 132)(36 133)(37 134)(38 135)(39 136)(40 137)(41 153)(42 154)(43 155)(44 156)(45 157)(46 158)(47 159)(48 160)(49 141)(50 142)(51 143)(52 144)(53 145)(54 146)(55 147)(56 148)(57 149)(58 150)(59 151)(60 152)(61 85)(62 86)(63 87)(64 88)(65 89)(66 90)(67 91)(68 92)(69 93)(70 94)(71 95)(72 96)(73 97)(74 98)(75 99)(76 100)(77 81)(78 82)(79 83)(80 84)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 38 77 152)(2 27 78 141)(3 36 79 150)(4 25 80 159)(5 34 61 148)(6 23 62 157)(7 32 63 146)(8 21 64 155)(9 30 65 144)(10 39 66 153)(11 28 67 142)(12 37 68 151)(13 26 69 160)(14 35 70 149)(15 24 71 158)(16 33 72 147)(17 22 73 156)(18 31 74 145)(19 40 75 154)(20 29 76 143)(41 102 136 90)(42 111 137 99)(43 120 138 88)(44 109 139 97)(45 118 140 86)(46 107 121 95)(47 116 122 84)(48 105 123 93)(49 114 124 82)(50 103 125 91)(51 112 126 100)(52 101 127 89)(53 110 128 98)(54 119 129 87)(55 108 130 96)(56 117 131 85)(57 106 132 94)(58 115 133 83)(59 104 134 92)(60 113 135 81)
(1 135 11 125)(2 134 12 124)(3 133 13 123)(4 132 14 122)(5 131 15 121)(6 130 16 140)(7 129 17 139)(8 128 18 138)(9 127 19 137)(10 126 20 136)(21 120 31 110)(22 119 32 109)(23 118 33 108)(24 117 34 107)(25 116 35 106)(26 115 36 105)(27 114 37 104)(28 113 38 103)(29 112 39 102)(30 111 40 101)(41 66 51 76)(42 65 52 75)(43 64 53 74)(44 63 54 73)(45 62 55 72)(46 61 56 71)(47 80 57 70)(48 79 58 69)(49 78 59 68)(50 77 60 67)(81 152 91 142)(82 151 92 141)(83 150 93 160)(84 149 94 159)(85 148 95 158)(86 147 96 157)(87 146 97 156)(88 145 98 155)(89 144 99 154)(90 143 100 153)

G:=sub<Sym(160)| (1,113)(2,114)(3,115)(4,116)(5,117)(6,118)(7,119)(8,120)(9,101)(10,102)(11,103)(12,104)(13,105)(14,106)(15,107)(16,108)(17,109)(18,110)(19,111)(20,112)(21,138)(22,139)(23,140)(24,121)(25,122)(26,123)(27,124)(28,125)(29,126)(30,127)(31,128)(32,129)(33,130)(34,131)(35,132)(36,133)(37,134)(38,135)(39,136)(40,137)(41,153)(42,154)(43,155)(44,156)(45,157)(46,158)(47,159)(48,160)(49,141)(50,142)(51,143)(52,144)(53,145)(54,146)(55,147)(56,148)(57,149)(58,150)(59,151)(60,152)(61,85)(62,86)(63,87)(64,88)(65,89)(66,90)(67,91)(68,92)(69,93)(70,94)(71,95)(72,96)(73,97)(74,98)(75,99)(76,100)(77,81)(78,82)(79,83)(80,84), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,38,77,152)(2,27,78,141)(3,36,79,150)(4,25,80,159)(5,34,61,148)(6,23,62,157)(7,32,63,146)(8,21,64,155)(9,30,65,144)(10,39,66,153)(11,28,67,142)(12,37,68,151)(13,26,69,160)(14,35,70,149)(15,24,71,158)(16,33,72,147)(17,22,73,156)(18,31,74,145)(19,40,75,154)(20,29,76,143)(41,102,136,90)(42,111,137,99)(43,120,138,88)(44,109,139,97)(45,118,140,86)(46,107,121,95)(47,116,122,84)(48,105,123,93)(49,114,124,82)(50,103,125,91)(51,112,126,100)(52,101,127,89)(53,110,128,98)(54,119,129,87)(55,108,130,96)(56,117,131,85)(57,106,132,94)(58,115,133,83)(59,104,134,92)(60,113,135,81), (1,135,11,125)(2,134,12,124)(3,133,13,123)(4,132,14,122)(5,131,15,121)(6,130,16,140)(7,129,17,139)(8,128,18,138)(9,127,19,137)(10,126,20,136)(21,120,31,110)(22,119,32,109)(23,118,33,108)(24,117,34,107)(25,116,35,106)(26,115,36,105)(27,114,37,104)(28,113,38,103)(29,112,39,102)(30,111,40,101)(41,66,51,76)(42,65,52,75)(43,64,53,74)(44,63,54,73)(45,62,55,72)(46,61,56,71)(47,80,57,70)(48,79,58,69)(49,78,59,68)(50,77,60,67)(81,152,91,142)(82,151,92,141)(83,150,93,160)(84,149,94,159)(85,148,95,158)(86,147,96,157)(87,146,97,156)(88,145,98,155)(89,144,99,154)(90,143,100,153)>;

G:=Group( (1,113)(2,114)(3,115)(4,116)(5,117)(6,118)(7,119)(8,120)(9,101)(10,102)(11,103)(12,104)(13,105)(14,106)(15,107)(16,108)(17,109)(18,110)(19,111)(20,112)(21,138)(22,139)(23,140)(24,121)(25,122)(26,123)(27,124)(28,125)(29,126)(30,127)(31,128)(32,129)(33,130)(34,131)(35,132)(36,133)(37,134)(38,135)(39,136)(40,137)(41,153)(42,154)(43,155)(44,156)(45,157)(46,158)(47,159)(48,160)(49,141)(50,142)(51,143)(52,144)(53,145)(54,146)(55,147)(56,148)(57,149)(58,150)(59,151)(60,152)(61,85)(62,86)(63,87)(64,88)(65,89)(66,90)(67,91)(68,92)(69,93)(70,94)(71,95)(72,96)(73,97)(74,98)(75,99)(76,100)(77,81)(78,82)(79,83)(80,84), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,38,77,152)(2,27,78,141)(3,36,79,150)(4,25,80,159)(5,34,61,148)(6,23,62,157)(7,32,63,146)(8,21,64,155)(9,30,65,144)(10,39,66,153)(11,28,67,142)(12,37,68,151)(13,26,69,160)(14,35,70,149)(15,24,71,158)(16,33,72,147)(17,22,73,156)(18,31,74,145)(19,40,75,154)(20,29,76,143)(41,102,136,90)(42,111,137,99)(43,120,138,88)(44,109,139,97)(45,118,140,86)(46,107,121,95)(47,116,122,84)(48,105,123,93)(49,114,124,82)(50,103,125,91)(51,112,126,100)(52,101,127,89)(53,110,128,98)(54,119,129,87)(55,108,130,96)(56,117,131,85)(57,106,132,94)(58,115,133,83)(59,104,134,92)(60,113,135,81), (1,135,11,125)(2,134,12,124)(3,133,13,123)(4,132,14,122)(5,131,15,121)(6,130,16,140)(7,129,17,139)(8,128,18,138)(9,127,19,137)(10,126,20,136)(21,120,31,110)(22,119,32,109)(23,118,33,108)(24,117,34,107)(25,116,35,106)(26,115,36,105)(27,114,37,104)(28,113,38,103)(29,112,39,102)(30,111,40,101)(41,66,51,76)(42,65,52,75)(43,64,53,74)(44,63,54,73)(45,62,55,72)(46,61,56,71)(47,80,57,70)(48,79,58,69)(49,78,59,68)(50,77,60,67)(81,152,91,142)(82,151,92,141)(83,150,93,160)(84,149,94,159)(85,148,95,158)(86,147,96,157)(87,146,97,156)(88,145,98,155)(89,144,99,154)(90,143,100,153) );

G=PermutationGroup([(1,113),(2,114),(3,115),(4,116),(5,117),(6,118),(7,119),(8,120),(9,101),(10,102),(11,103),(12,104),(13,105),(14,106),(15,107),(16,108),(17,109),(18,110),(19,111),(20,112),(21,138),(22,139),(23,140),(24,121),(25,122),(26,123),(27,124),(28,125),(29,126),(30,127),(31,128),(32,129),(33,130),(34,131),(35,132),(36,133),(37,134),(38,135),(39,136),(40,137),(41,153),(42,154),(43,155),(44,156),(45,157),(46,158),(47,159),(48,160),(49,141),(50,142),(51,143),(52,144),(53,145),(54,146),(55,147),(56,148),(57,149),(58,150),(59,151),(60,152),(61,85),(62,86),(63,87),(64,88),(65,89),(66,90),(67,91),(68,92),(69,93),(70,94),(71,95),(72,96),(73,97),(74,98),(75,99),(76,100),(77,81),(78,82),(79,83),(80,84)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,38,77,152),(2,27,78,141),(3,36,79,150),(4,25,80,159),(5,34,61,148),(6,23,62,157),(7,32,63,146),(8,21,64,155),(9,30,65,144),(10,39,66,153),(11,28,67,142),(12,37,68,151),(13,26,69,160),(14,35,70,149),(15,24,71,158),(16,33,72,147),(17,22,73,156),(18,31,74,145),(19,40,75,154),(20,29,76,143),(41,102,136,90),(42,111,137,99),(43,120,138,88),(44,109,139,97),(45,118,140,86),(46,107,121,95),(47,116,122,84),(48,105,123,93),(49,114,124,82),(50,103,125,91),(51,112,126,100),(52,101,127,89),(53,110,128,98),(54,119,129,87),(55,108,130,96),(56,117,131,85),(57,106,132,94),(58,115,133,83),(59,104,134,92),(60,113,135,81)], [(1,135,11,125),(2,134,12,124),(3,133,13,123),(4,132,14,122),(5,131,15,121),(6,130,16,140),(7,129,17,139),(8,128,18,138),(9,127,19,137),(10,126,20,136),(21,120,31,110),(22,119,32,109),(23,118,33,108),(24,117,34,107),(25,116,35,106),(26,115,36,105),(27,114,37,104),(28,113,38,103),(29,112,39,102),(30,111,40,101),(41,66,51,76),(42,65,52,75),(43,64,53,74),(44,63,54,73),(45,62,55,72),(46,61,56,71),(47,80,57,70),(48,79,58,69),(49,78,59,68),(50,77,60,67),(81,152,91,142),(82,151,92,141),(83,150,93,160),(84,149,94,159),(85,148,95,158),(86,147,96,157),(87,146,97,156),(88,145,98,155),(89,144,99,154),(90,143,100,153)])

Matrix representation G ⊆ GL5(𝔽41)

400000
01000
00100
000400
000040
,
400000
00100
040000
000230
0001825
,
10000
09000
00900
0002339
0001918
,
10000
09000
003200
0002339
0001818

G:=sub<GL(5,GF(41))| [40,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,40,0,0,0,0,0,40],[40,0,0,0,0,0,0,40,0,0,0,1,0,0,0,0,0,0,23,18,0,0,0,0,25],[1,0,0,0,0,0,9,0,0,0,0,0,9,0,0,0,0,0,23,19,0,0,0,39,18],[1,0,0,0,0,0,9,0,0,0,0,0,32,0,0,0,0,0,23,18,0,0,0,39,18] >;

68 conjugacy classes

class 1 2A···2G2H2I2J2K4A4B4C4D4E···4L4M4N4O4P5A5B10A···10N10O···10AD20A···20H
order12···2222244444···444445510···1010···1020···20
size11···14444222210···1020202020222···24···44···4

68 irreducible representations

dim11111122222224
type+++++++++++-
imageC1C2C2C2C2C2D4D5C4○D4D10D10D10C5⋊D4D42D5
kernelC2×C20.17D4C2×C4×Dic5C20.17D4C2×C23.D5C22×Dic10D4×C2×C10C2×C20C22×D4C2×C10C22×C4C2×D4C24C2×C4C22
# reps118411428284168

In GAP, Magma, Sage, TeX

C_2\times C_{20}._{17}D_4
% in TeX

G:=Group("C2xC20.17D4");
// GroupNames label

G:=SmallGroup(320,1469);
// by ID

G=gap.SmallGroup(320,1469);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,224,100,1571,185,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^20=c^4=1,d^2=b^10,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c^-1=b^9,d*b*d^-1=b^-1,d*c*d^-1=b^10*c^-1>;
// generators/relations

׿
×
𝔽