direct product, metabelian, supersoluble, monomial, A-group, 2-hyperelementary
Aliases: C4×D5⋊C8, C42.17F5, C20.26C42, D10.8C42, C20⋊4(C2×C8), (C4×D5)⋊6C8, D5⋊1(C4×C8), C4.19(C4×F5), (C4×C20).16C4, Dic5⋊6(C2×C8), D10.12(C2×C8), C10.1(C22×C8), C10.1(C2×C42), (C4×Dic5).43C4, (D5×C42).28C2, C22.24(C22×F5), Dic5.25(C22×C4), (C4×Dic5).353C22, (C2×Dic5).311C23, C5⋊1(C2×C4×C8), C5⋊C8⋊7(C2×C4), (C4×C5⋊C8)⋊19C2, C2.1(C2×C4×F5), C2.1(C2×D5⋊C8), (C2×C4×D5).42C4, (C2×D5⋊C8).11C2, (C4×D5).69(C2×C4), (C2×C5⋊C8).43C22, (C2×C4).159(C2×F5), (C2×C20).165(C2×C4), (C2×C4×D5).408C22, (C2×C10).13(C22×C4), (C2×Dic5).161(C2×C4), (C22×D5).113(C2×C4), SmallGroup(320,1013)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C5 — C10 — Dic5 — C2×Dic5 — C2×C5⋊C8 — C4×C5⋊C8 — C4×D5⋊C8 |
C5 — C4×D5⋊C8 |
Subgroups: 426 in 162 conjugacy classes, 96 normal (16 characteristic)
C1, C2, C2 [×2], C2 [×4], C4 [×6], C4 [×6], C22, C22 [×6], C5, C8 [×8], C2×C4, C2×C4 [×2], C2×C4 [×15], C23, D5 [×4], C10, C10 [×2], C42, C42 [×3], C2×C8 [×12], C22×C4 [×3], Dic5 [×6], C20 [×6], D10 [×6], C2×C10, C4×C8 [×4], C2×C42, C22×C8 [×2], C5⋊C8 [×8], C4×D5 [×12], C2×Dic5, C2×Dic5 [×2], C2×C20, C2×C20 [×2], C22×D5, C2×C4×C8, C4×Dic5, C4×Dic5 [×2], C4×C20, D5⋊C8 [×8], C2×C5⋊C8 [×4], C2×C4×D5, C2×C4×D5 [×2], C4×C5⋊C8 [×4], D5×C42, C2×D5⋊C8 [×2], C4×D5⋊C8
Quotients:
C1, C2 [×7], C4 [×12], C22 [×7], C8 [×8], C2×C4 [×18], C23, C42 [×4], C2×C8 [×12], C22×C4 [×3], F5, C4×C8 [×4], C2×C42, C22×C8 [×2], C2×F5 [×3], C2×C4×C8, D5⋊C8 [×4], C4×F5 [×2], C22×F5, C2×D5⋊C8 [×2], C2×C4×F5, C4×D5⋊C8
Generators and relations
G = < a,b,c,d | a4=b5=c2=d8=1, ab=ba, ac=ca, ad=da, cbc=b-1, dbd-1=b3, dcd-1=b2c >
(1 12 105 75)(2 13 106 76)(3 14 107 77)(4 15 108 78)(5 16 109 79)(6 9 110 80)(7 10 111 73)(8 11 112 74)(17 68 83 33)(18 69 84 34)(19 70 85 35)(20 71 86 36)(21 72 87 37)(22 65 88 38)(23 66 81 39)(24 67 82 40)(25 114 58 90)(26 115 59 91)(27 116 60 92)(28 117 61 93)(29 118 62 94)(30 119 63 95)(31 120 64 96)(32 113 57 89)(41 129 126 104)(42 130 127 97)(43 131 128 98)(44 132 121 99)(45 133 122 100)(46 134 123 101)(47 135 124 102)(48 136 125 103)(49 151 157 144)(50 152 158 137)(51 145 159 138)(52 146 160 139)(53 147 153 140)(54 148 154 141)(55 149 155 142)(56 150 156 143)
(1 66 61 131 138)(2 132 67 139 62)(3 140 133 63 68)(4 64 141 69 134)(5 70 57 135 142)(6 136 71 143 58)(7 144 129 59 72)(8 60 137 65 130)(9 125 86 56 90)(10 49 126 91 87)(11 92 50 88 127)(12 81 93 128 51)(13 121 82 52 94)(14 53 122 95 83)(15 96 54 84 123)(16 85 89 124 55)(17 77 153 45 119)(18 46 78 120 154)(19 113 47 155 79)(20 156 114 80 48)(21 73 157 41 115)(22 42 74 116 158)(23 117 43 159 75)(24 160 118 76 44)(25 110 103 36 150)(26 37 111 151 104)(27 152 38 97 112)(28 98 145 105 39)(29 106 99 40 146)(30 33 107 147 100)(31 148 34 101 108)(32 102 149 109 35)
(1 138)(2 62)(3 68)(4 134)(5 142)(6 58)(7 72)(8 130)(9 90)(10 87)(11 127)(12 51)(13 94)(14 83)(15 123)(16 55)(17 77)(18 120)(19 47)(21 73)(22 116)(23 43)(25 110)(26 151)(27 38)(29 106)(30 147)(31 34)(33 107)(35 102)(37 111)(39 98)(42 74)(44 160)(46 78)(48 156)(49 91)(52 121)(53 95)(56 125)(59 144)(60 65)(63 140)(64 69)(66 131)(70 135)(75 159)(76 118)(79 155)(80 114)(81 128)(84 96)(85 124)(88 92)(97 112)(99 146)(101 108)(103 150)(105 145)(109 149)(115 157)(119 153)(132 139)(136 143)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)(129 130 131 132 133 134 135 136)(137 138 139 140 141 142 143 144)(145 146 147 148 149 150 151 152)(153 154 155 156 157 158 159 160)
G:=sub<Sym(160)| (1,12,105,75)(2,13,106,76)(3,14,107,77)(4,15,108,78)(5,16,109,79)(6,9,110,80)(7,10,111,73)(8,11,112,74)(17,68,83,33)(18,69,84,34)(19,70,85,35)(20,71,86,36)(21,72,87,37)(22,65,88,38)(23,66,81,39)(24,67,82,40)(25,114,58,90)(26,115,59,91)(27,116,60,92)(28,117,61,93)(29,118,62,94)(30,119,63,95)(31,120,64,96)(32,113,57,89)(41,129,126,104)(42,130,127,97)(43,131,128,98)(44,132,121,99)(45,133,122,100)(46,134,123,101)(47,135,124,102)(48,136,125,103)(49,151,157,144)(50,152,158,137)(51,145,159,138)(52,146,160,139)(53,147,153,140)(54,148,154,141)(55,149,155,142)(56,150,156,143), (1,66,61,131,138)(2,132,67,139,62)(3,140,133,63,68)(4,64,141,69,134)(5,70,57,135,142)(6,136,71,143,58)(7,144,129,59,72)(8,60,137,65,130)(9,125,86,56,90)(10,49,126,91,87)(11,92,50,88,127)(12,81,93,128,51)(13,121,82,52,94)(14,53,122,95,83)(15,96,54,84,123)(16,85,89,124,55)(17,77,153,45,119)(18,46,78,120,154)(19,113,47,155,79)(20,156,114,80,48)(21,73,157,41,115)(22,42,74,116,158)(23,117,43,159,75)(24,160,118,76,44)(25,110,103,36,150)(26,37,111,151,104)(27,152,38,97,112)(28,98,145,105,39)(29,106,99,40,146)(30,33,107,147,100)(31,148,34,101,108)(32,102,149,109,35), (1,138)(2,62)(3,68)(4,134)(5,142)(6,58)(7,72)(8,130)(9,90)(10,87)(11,127)(12,51)(13,94)(14,83)(15,123)(16,55)(17,77)(18,120)(19,47)(21,73)(22,116)(23,43)(25,110)(26,151)(27,38)(29,106)(30,147)(31,34)(33,107)(35,102)(37,111)(39,98)(42,74)(44,160)(46,78)(48,156)(49,91)(52,121)(53,95)(56,125)(59,144)(60,65)(63,140)(64,69)(66,131)(70,135)(75,159)(76,118)(79,155)(80,114)(81,128)(84,96)(85,124)(88,92)(97,112)(99,146)(101,108)(103,150)(105,145)(109,149)(115,157)(119,153)(132,139)(136,143), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152)(153,154,155,156,157,158,159,160)>;
G:=Group( (1,12,105,75)(2,13,106,76)(3,14,107,77)(4,15,108,78)(5,16,109,79)(6,9,110,80)(7,10,111,73)(8,11,112,74)(17,68,83,33)(18,69,84,34)(19,70,85,35)(20,71,86,36)(21,72,87,37)(22,65,88,38)(23,66,81,39)(24,67,82,40)(25,114,58,90)(26,115,59,91)(27,116,60,92)(28,117,61,93)(29,118,62,94)(30,119,63,95)(31,120,64,96)(32,113,57,89)(41,129,126,104)(42,130,127,97)(43,131,128,98)(44,132,121,99)(45,133,122,100)(46,134,123,101)(47,135,124,102)(48,136,125,103)(49,151,157,144)(50,152,158,137)(51,145,159,138)(52,146,160,139)(53,147,153,140)(54,148,154,141)(55,149,155,142)(56,150,156,143), (1,66,61,131,138)(2,132,67,139,62)(3,140,133,63,68)(4,64,141,69,134)(5,70,57,135,142)(6,136,71,143,58)(7,144,129,59,72)(8,60,137,65,130)(9,125,86,56,90)(10,49,126,91,87)(11,92,50,88,127)(12,81,93,128,51)(13,121,82,52,94)(14,53,122,95,83)(15,96,54,84,123)(16,85,89,124,55)(17,77,153,45,119)(18,46,78,120,154)(19,113,47,155,79)(20,156,114,80,48)(21,73,157,41,115)(22,42,74,116,158)(23,117,43,159,75)(24,160,118,76,44)(25,110,103,36,150)(26,37,111,151,104)(27,152,38,97,112)(28,98,145,105,39)(29,106,99,40,146)(30,33,107,147,100)(31,148,34,101,108)(32,102,149,109,35), (1,138)(2,62)(3,68)(4,134)(5,142)(6,58)(7,72)(8,130)(9,90)(10,87)(11,127)(12,51)(13,94)(14,83)(15,123)(16,55)(17,77)(18,120)(19,47)(21,73)(22,116)(23,43)(25,110)(26,151)(27,38)(29,106)(30,147)(31,34)(33,107)(35,102)(37,111)(39,98)(42,74)(44,160)(46,78)(48,156)(49,91)(52,121)(53,95)(56,125)(59,144)(60,65)(63,140)(64,69)(66,131)(70,135)(75,159)(76,118)(79,155)(80,114)(81,128)(84,96)(85,124)(88,92)(97,112)(99,146)(101,108)(103,150)(105,145)(109,149)(115,157)(119,153)(132,139)(136,143), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152)(153,154,155,156,157,158,159,160) );
G=PermutationGroup([(1,12,105,75),(2,13,106,76),(3,14,107,77),(4,15,108,78),(5,16,109,79),(6,9,110,80),(7,10,111,73),(8,11,112,74),(17,68,83,33),(18,69,84,34),(19,70,85,35),(20,71,86,36),(21,72,87,37),(22,65,88,38),(23,66,81,39),(24,67,82,40),(25,114,58,90),(26,115,59,91),(27,116,60,92),(28,117,61,93),(29,118,62,94),(30,119,63,95),(31,120,64,96),(32,113,57,89),(41,129,126,104),(42,130,127,97),(43,131,128,98),(44,132,121,99),(45,133,122,100),(46,134,123,101),(47,135,124,102),(48,136,125,103),(49,151,157,144),(50,152,158,137),(51,145,159,138),(52,146,160,139),(53,147,153,140),(54,148,154,141),(55,149,155,142),(56,150,156,143)], [(1,66,61,131,138),(2,132,67,139,62),(3,140,133,63,68),(4,64,141,69,134),(5,70,57,135,142),(6,136,71,143,58),(7,144,129,59,72),(8,60,137,65,130),(9,125,86,56,90),(10,49,126,91,87),(11,92,50,88,127),(12,81,93,128,51),(13,121,82,52,94),(14,53,122,95,83),(15,96,54,84,123),(16,85,89,124,55),(17,77,153,45,119),(18,46,78,120,154),(19,113,47,155,79),(20,156,114,80,48),(21,73,157,41,115),(22,42,74,116,158),(23,117,43,159,75),(24,160,118,76,44),(25,110,103,36,150),(26,37,111,151,104),(27,152,38,97,112),(28,98,145,105,39),(29,106,99,40,146),(30,33,107,147,100),(31,148,34,101,108),(32,102,149,109,35)], [(1,138),(2,62),(3,68),(4,134),(5,142),(6,58),(7,72),(8,130),(9,90),(10,87),(11,127),(12,51),(13,94),(14,83),(15,123),(16,55),(17,77),(18,120),(19,47),(21,73),(22,116),(23,43),(25,110),(26,151),(27,38),(29,106),(30,147),(31,34),(33,107),(35,102),(37,111),(39,98),(42,74),(44,160),(46,78),(48,156),(49,91),(52,121),(53,95),(56,125),(59,144),(60,65),(63,140),(64,69),(66,131),(70,135),(75,159),(76,118),(79,155),(80,114),(81,128),(84,96),(85,124),(88,92),(97,112),(99,146),(101,108),(103,150),(105,145),(109,149),(115,157),(119,153),(132,139),(136,143)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128),(129,130,131,132,133,134,135,136),(137,138,139,140,141,142,143,144),(145,146,147,148,149,150,151,152),(153,154,155,156,157,158,159,160)])
Matrix representation ►G ⊆ GL5(𝔽41)
1 | 0 | 0 | 0 | 0 |
0 | 32 | 0 | 0 | 0 |
0 | 0 | 32 | 0 | 0 |
0 | 0 | 0 | 32 | 0 |
0 | 0 | 0 | 0 | 32 |
1 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 0 |
0 | 1 | 34 | 0 | 0 |
0 | 0 | 0 | 40 | 7 |
0 | 0 | 0 | 34 | 7 |
40 | 0 | 0 | 0 | 0 |
0 | 34 | 7 | 0 | 0 |
0 | 40 | 7 | 0 | 0 |
0 | 0 | 0 | 7 | 40 |
0 | 0 | 0 | 7 | 34 |
27 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 9 | 0 |
0 | 0 | 0 | 0 | 9 |
0 | 32 | 22 | 0 | 0 |
0 | 0 | 9 | 0 | 0 |
G:=sub<GL(5,GF(41))| [1,0,0,0,0,0,32,0,0,0,0,0,32,0,0,0,0,0,32,0,0,0,0,0,32],[1,0,0,0,0,0,0,1,0,0,0,40,34,0,0,0,0,0,40,34,0,0,0,7,7],[40,0,0,0,0,0,34,40,0,0,0,7,7,0,0,0,0,0,7,7,0,0,0,40,34],[27,0,0,0,0,0,0,0,32,0,0,0,0,22,9,0,9,0,0,0,0,0,9,0,0] >;
80 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 4A | ··· | 4L | 4M | ··· | 4X | 5 | 8A | ··· | 8AF | 10A | 10B | 10C | 20A | ··· | 20L |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 4 | ··· | 4 | 5 | 8 | ··· | 8 | 10 | 10 | 10 | 20 | ··· | 20 |
size | 1 | 1 | 1 | 1 | 5 | 5 | 5 | 5 | 1 | ··· | 1 | 5 | ··· | 5 | 4 | 5 | ··· | 5 | 4 | 4 | 4 | 4 | ··· | 4 |
80 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | + | |||||||
image | C1 | C2 | C2 | C2 | C4 | C4 | C4 | C4 | C8 | F5 | C2×F5 | D5⋊C8 | C4×F5 |
kernel | C4×D5⋊C8 | C4×C5⋊C8 | D5×C42 | C2×D5⋊C8 | C4×Dic5 | C4×C20 | D5⋊C8 | C2×C4×D5 | C4×D5 | C42 | C2×C4 | C4 | C4 |
# reps | 1 | 4 | 1 | 2 | 2 | 2 | 16 | 4 | 32 | 1 | 3 | 8 | 4 |
In GAP, Magma, Sage, TeX
C_4\times D_5\rtimes C_8
% in TeX
G:=Group("C4xD5:C8");
// GroupNames label
G:=SmallGroup(320,1013);
// by ID
G=gap.SmallGroup(320,1013);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,56,120,184,136,6278,1595]);
// Polycyclic
G:=Group<a,b,c,d|a^4=b^5=c^2=d^8=1,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c=b^-1,d*b*d^-1=b^3,d*c*d^-1=b^2*c>;
// generators/relations