extension | φ:Q→Out N | d | ρ | Label | ID |
(C5×D4)⋊1(C2×C4) = D8×F5 | φ: C2×C4/C1 → C2×C4 ⊆ Out C5×D4 | 40 | 8+ | (C5xD4):1(C2xC4) | 320,1068 |
(C5×D4)⋊2(C2×C4) = D40⋊C4 | φ: C2×C4/C1 → C2×C4 ⊆ Out C5×D4 | 40 | 8+ | (C5xD4):2(C2xC4) | 320,1069 |
(C5×D4)⋊3(C2×C4) = C2×D20⋊C4 | φ: C2×C4/C2 → C4 ⊆ Out C5×D4 | 80 | | (C5xD4):3(C2xC4) | 320,1104 |
(C5×D4)⋊4(C2×C4) = C2×D4⋊F5 | φ: C2×C4/C2 → C4 ⊆ Out C5×D4 | 80 | | (C5xD4):4(C2xC4) | 320,1106 |
(C5×D4)⋊5(C2×C4) = D5⋊C4≀C2 | φ: C2×C4/C2 → C4 ⊆ Out C5×D4 | 40 | 8 | (C5xD4):5(C2xC4) | 320,1130 |
(C5×D4)⋊6(C2×C4) = C4○D4⋊F5 | φ: C2×C4/C2 → C4 ⊆ Out C5×D4 | 40 | 8 | (C5xD4):6(C2xC4) | 320,1131 |
(C5×D4)⋊7(C2×C4) = C2×D4×F5 | φ: C2×C4/C2 → C4 ⊆ Out C5×D4 | 40 | | (C5xD4):7(C2xC4) | 320,1595 |
(C5×D4)⋊8(C2×C4) = D10.C24 | φ: C2×C4/C2 → C4 ⊆ Out C5×D4 | 40 | 8+ | (C5xD4):8(C2xC4) | 320,1596 |
(C5×D4)⋊9(C2×C4) = C4○D4×F5 | φ: C2×C4/C2 → C4 ⊆ Out C5×D4 | 40 | 8 | (C5xD4):9(C2xC4) | 320,1603 |
(C5×D4)⋊10(C2×C4) = D5.2+ 1+4 | φ: C2×C4/C2 → C4 ⊆ Out C5×D4 | 40 | 8 | (C5xD4):10(C2xC4) | 320,1604 |
(C5×D4)⋊11(C2×C4) = Dic5⋊4D8 | φ: C2×C4/C2 → C22 ⊆ Out C5×D4 | 160 | | (C5xD4):11(C2xC4) | 320,383 |
(C5×D4)⋊12(C2×C4) = D5×D4⋊C4 | φ: C2×C4/C2 → C22 ⊆ Out C5×D4 | 80 | | (C5xD4):12(C2xC4) | 320,396 |
(C5×D4)⋊13(C2×C4) = D4⋊(C4×D5) | φ: C2×C4/C2 → C22 ⊆ Out C5×D4 | 160 | | (C5xD4):13(C2xC4) | 320,398 |
(C5×D4)⋊14(C2×C4) = D4⋊D5⋊6C4 | φ: C2×C4/C2 → C22 ⊆ Out C5×D4 | 160 | | (C5xD4):14(C2xC4) | 320,412 |
(C5×D4)⋊15(C2×C4) = D5×C4≀C2 | φ: C2×C4/C2 → C22 ⊆ Out C5×D4 | 40 | 4 | (C5xD4):15(C2xC4) | 320,447 |
(C5×D4)⋊16(C2×C4) = D8×Dic5 | φ: C2×C4/C2 → C22 ⊆ Out C5×D4 | 160 | | (C5xD4):16(C2xC4) | 320,776 |
(C5×D4)⋊17(C2×C4) = D8⋊Dic5 | φ: C2×C4/C2 → C22 ⊆ Out C5×D4 | 160 | | (C5xD4):17(C2xC4) | 320,779 |
(C5×D4)⋊18(C2×C4) = C4×D4⋊D5 | φ: C2×C4/C4 → C2 ⊆ Out C5×D4 | 160 | | (C5xD4):18(C2xC4) | 320,640 |
(C5×D4)⋊19(C2×C4) = C42.48D10 | φ: C2×C4/C4 → C2 ⊆ Out C5×D4 | 160 | | (C5xD4):19(C2xC4) | 320,641 |
(C5×D4)⋊20(C2×C4) = C4×D4⋊2D5 | φ: C2×C4/C4 → C2 ⊆ Out C5×D4 | 160 | | (C5xD4):20(C2xC4) | 320,1208 |
(C5×D4)⋊21(C2×C4) = C4×D4×D5 | φ: C2×C4/C4 → C2 ⊆ Out C5×D4 | 80 | | (C5xD4):21(C2xC4) | 320,1216 |
(C5×D4)⋊22(C2×C4) = C42⋊11D10 | φ: C2×C4/C4 → C2 ⊆ Out C5×D4 | 80 | | (C5xD4):22(C2xC4) | 320,1217 |
(C5×D4)⋊23(C2×C4) = C42.108D10 | φ: C2×C4/C4 → C2 ⊆ Out C5×D4 | 160 | | (C5xD4):23(C2xC4) | 320,1218 |
(C5×D4)⋊24(C2×C4) = D8×C20 | φ: C2×C4/C4 → C2 ⊆ Out C5×D4 | 160 | | (C5xD4):24(C2xC4) | 320,938 |
(C5×D4)⋊25(C2×C4) = C5×D8⋊C4 | φ: C2×C4/C4 → C2 ⊆ Out C5×D4 | 160 | | (C5xD4):25(C2xC4) | 320,943 |
(C5×D4)⋊26(C2×C4) = C2×D4⋊Dic5 | φ: C2×C4/C22 → C2 ⊆ Out C5×D4 | 160 | | (C5xD4):26(C2xC4) | 320,841 |
(C5×D4)⋊27(C2×C4) = C4○D4⋊Dic5 | φ: C2×C4/C22 → C2 ⊆ Out C5×D4 | 160 | | (C5xD4):27(C2xC4) | 320,859 |
(C5×D4)⋊28(C2×C4) = C2×D4⋊2Dic5 | φ: C2×C4/C22 → C2 ⊆ Out C5×D4 | 80 | | (C5xD4):28(C2xC4) | 320,862 |
(C5×D4)⋊29(C2×C4) = C2×D4×Dic5 | φ: C2×C4/C22 → C2 ⊆ Out C5×D4 | 160 | | (C5xD4):29(C2xC4) | 320,1467 |
(C5×D4)⋊30(C2×C4) = C24.38D10 | φ: C2×C4/C22 → C2 ⊆ Out C5×D4 | 80 | | (C5xD4):30(C2xC4) | 320,1470 |
(C5×D4)⋊31(C2×C4) = C4○D4×Dic5 | φ: C2×C4/C22 → C2 ⊆ Out C5×D4 | 160 | | (C5xD4):31(C2xC4) | 320,1498 |
(C5×D4)⋊32(C2×C4) = C10.1062- 1+4 | φ: C2×C4/C22 → C2 ⊆ Out C5×D4 | 160 | | (C5xD4):32(C2xC4) | 320,1499 |
(C5×D4)⋊33(C2×C4) = C10×D4⋊C4 | φ: C2×C4/C22 → C2 ⊆ Out C5×D4 | 160 | | (C5xD4):33(C2xC4) | 320,915 |
(C5×D4)⋊34(C2×C4) = C5×C23.36D4 | φ: C2×C4/C22 → C2 ⊆ Out C5×D4 | 160 | | (C5xD4):34(C2xC4) | 320,918 |
(C5×D4)⋊35(C2×C4) = C10×C4≀C2 | φ: C2×C4/C22 → C2 ⊆ Out C5×D4 | 80 | | (C5xD4):35(C2xC4) | 320,921 |
(C5×D4)⋊36(C2×C4) = C4○D4×C20 | φ: trivial image | 160 | | (C5xD4):36(C2xC4) | 320,1519 |
(C5×D4)⋊37(C2×C4) = C5×C22.11C24 | φ: trivial image | 80 | | (C5xD4):37(C2xC4) | 320,1520 |
(C5×D4)⋊38(C2×C4) = C5×C23.33C23 | φ: trivial image | 160 | | (C5xD4):38(C2xC4) | 320,1522 |
extension | φ:Q→Out N | d | ρ | Label | ID |
(C5×D4).1(C2×C4) = D8⋊5F5 | φ: C2×C4/C1 → C2×C4 ⊆ Out C5×D4 | 80 | 8- | (C5xD4).1(C2xC4) | 320,1070 |
(C5×D4).2(C2×C4) = D8⋊F5 | φ: C2×C4/C1 → C2×C4 ⊆ Out C5×D4 | 80 | 8- | (C5xD4).2(C2xC4) | 320,1071 |
(C5×D4).3(C2×C4) = SD16×F5 | φ: C2×C4/C1 → C2×C4 ⊆ Out C5×D4 | 40 | 8 | (C5xD4).3(C2xC4) | 320,1072 |
(C5×D4).4(C2×C4) = SD16⋊F5 | φ: C2×C4/C1 → C2×C4 ⊆ Out C5×D4 | 40 | 8 | (C5xD4).4(C2xC4) | 320,1073 |
(C5×D4).5(C2×C4) = SD16⋊3F5 | φ: C2×C4/C1 → C2×C4 ⊆ Out C5×D4 | 80 | 8 | (C5xD4).5(C2xC4) | 320,1074 |
(C5×D4).6(C2×C4) = SD16⋊2F5 | φ: C2×C4/C1 → C2×C4 ⊆ Out C5×D4 | 80 | 8 | (C5xD4).6(C2xC4) | 320,1075 |
(C5×D4).7(C2×C4) = (D4×C10)⋊C4 | φ: C2×C4/C2 → C4 ⊆ Out C5×D4 | 40 | 8+ | (C5xD4).7(C2xC4) | 320,1105 |
(C5×D4).8(C2×C4) = (C2×D4)⋊6F5 | φ: C2×C4/C2 → C4 ⊆ Out C5×D4 | 80 | 8- | (C5xD4).8(C2xC4) | 320,1107 |
(C5×D4).9(C2×C4) = C4○D20⋊C4 | φ: C2×C4/C2 → C4 ⊆ Out C5×D4 | 80 | 8 | (C5xD4).9(C2xC4) | 320,1132 |
(C5×D4).10(C2×C4) = D4⋊F5⋊C2 | φ: C2×C4/C2 → C4 ⊆ Out C5×D4 | 80 | 8 | (C5xD4).10(C2xC4) | 320,1133 |
(C5×D4).11(C2×C4) = C2×D4.F5 | φ: C2×C4/C2 → C4 ⊆ Out C5×D4 | 160 | | (C5xD4).11(C2xC4) | 320,1593 |
(C5×D4).12(C2×C4) = Dic5.C24 | φ: C2×C4/C2 → C4 ⊆ Out C5×D4 | 80 | 8- | (C5xD4).12(C2xC4) | 320,1594 |
(C5×D4).13(C2×C4) = Dic5.21C24 | φ: C2×C4/C2 → C4 ⊆ Out C5×D4 | 80 | 8 | (C5xD4).13(C2xC4) | 320,1601 |
(C5×D4).14(C2×C4) = Dic5.22C24 | φ: C2×C4/C2 → C4 ⊆ Out C5×D4 | 80 | 8 | (C5xD4).14(C2xC4) | 320,1602 |
(C5×D4).15(C2×C4) = D4.D5⋊5C4 | φ: C2×C4/C2 → C22 ⊆ Out C5×D4 | 160 | | (C5xD4).15(C2xC4) | 320,384 |
(C5×D4).16(C2×C4) = Dic5⋊6SD16 | φ: C2×C4/C2 → C22 ⊆ Out C5×D4 | 160 | | (C5xD4).16(C2xC4) | 320,385 |
(C5×D4).17(C2×C4) = (D4×D5)⋊C4 | φ: C2×C4/C2 → C22 ⊆ Out C5×D4 | 80 | | (C5xD4).17(C2xC4) | 320,397 |
(C5×D4).18(C2×C4) = D4⋊2D5⋊C4 | φ: C2×C4/C2 → C22 ⊆ Out C5×D4 | 160 | | (C5xD4).18(C2xC4) | 320,399 |
(C5×D4).19(C2×C4) = C42⋊D10 | φ: C2×C4/C2 → C22 ⊆ Out C5×D4 | 80 | 4 | (C5xD4).19(C2xC4) | 320,448 |
(C5×D4).20(C2×C4) = M4(2).22D10 | φ: C2×C4/C2 → C22 ⊆ Out C5×D4 | 80 | 4 | (C5xD4).20(C2xC4) | 320,450 |
(C5×D4).21(C2×C4) = C42.196D10 | φ: C2×C4/C2 → C22 ⊆ Out C5×D4 | 80 | 4 | (C5xD4).21(C2xC4) | 320,451 |
(C5×D4).22(C2×C4) = SD16×Dic5 | φ: C2×C4/C2 → C22 ⊆ Out C5×D4 | 160 | | (C5xD4).22(C2xC4) | 320,788 |
(C5×D4).23(C2×C4) = SD16⋊Dic5 | φ: C2×C4/C2 → C22 ⊆ Out C5×D4 | 160 | | (C5xD4).23(C2xC4) | 320,791 |
(C5×D4).24(C2×C4) = D8⋊5Dic5 | φ: C2×C4/C2 → C22 ⊆ Out C5×D4 | 80 | 4 | (C5xD4).24(C2xC4) | 320,823 |
(C5×D4).25(C2×C4) = D8⋊4Dic5 | φ: C2×C4/C2 → C22 ⊆ Out C5×D4 | 80 | 4 | (C5xD4).25(C2xC4) | 320,824 |
(C5×D4).26(C2×C4) = C4×D4.D5 | φ: C2×C4/C4 → C2 ⊆ Out C5×D4 | 160 | | (C5xD4).26(C2xC4) | 320,644 |
(C5×D4).27(C2×C4) = C42.51D10 | φ: C2×C4/C4 → C2 ⊆ Out C5×D4 | 160 | | (C5xD4).27(C2xC4) | 320,645 |
(C5×D4).28(C2×C4) = C40.93D4 | φ: C2×C4/C4 → C2 ⊆ Out C5×D4 | 80 | 4 | (C5xD4).28(C2xC4) | 320,771 |
(C5×D4).29(C2×C4) = C40.50D4 | φ: C2×C4/C4 → C2 ⊆ Out C5×D4 | 80 | 4 | (C5xD4).29(C2xC4) | 320,772 |
(C5×D4).30(C2×C4) = D5×C8○D4 | φ: C2×C4/C4 → C2 ⊆ Out C5×D4 | 80 | 4 | (C5xD4).30(C2xC4) | 320,1421 |
(C5×D4).31(C2×C4) = C20.72C24 | φ: C2×C4/C4 → C2 ⊆ Out C5×D4 | 80 | 4 | (C5xD4).31(C2xC4) | 320,1422 |
(C5×D4).32(C2×C4) = SD16×C20 | φ: C2×C4/C4 → C2 ⊆ Out C5×D4 | 160 | | (C5xD4).32(C2xC4) | 320,939 |
(C5×D4).33(C2×C4) = C5×SD16⋊C4 | φ: C2×C4/C4 → C2 ⊆ Out C5×D4 | 160 | | (C5xD4).33(C2xC4) | 320,941 |
(C5×D4).34(C2×C4) = C5×C8○D8 | φ: C2×C4/C4 → C2 ⊆ Out C5×D4 | 80 | 2 | (C5xD4).34(C2xC4) | 320,944 |
(C5×D4).35(C2×C4) = C5×C8.26D4 | φ: C2×C4/C4 → C2 ⊆ Out C5×D4 | 80 | 4 | (C5xD4).35(C2xC4) | 320,945 |
(C5×D4).36(C2×C4) = (D4×C10)⋊18C4 | φ: C2×C4/C22 → C2 ⊆ Out C5×D4 | 80 | | (C5xD4).36(C2xC4) | 320,842 |
(C5×D4).37(C2×C4) = C20.(C2×D4) | φ: C2×C4/C22 → C2 ⊆ Out C5×D4 | 160 | | (C5xD4).37(C2xC4) | 320,860 |
(C5×D4).38(C2×C4) = (D4×C10)⋊21C4 | φ: C2×C4/C22 → C2 ⊆ Out C5×D4 | 80 | 4 | (C5xD4).38(C2xC4) | 320,863 |
(C5×D4).39(C2×C4) = C2×D4.Dic5 | φ: C2×C4/C22 → C2 ⊆ Out C5×D4 | 160 | | (C5xD4).39(C2xC4) | 320,1490 |
(C5×D4).40(C2×C4) = C20.76C24 | φ: C2×C4/C22 → C2 ⊆ Out C5×D4 | 80 | 4 | (C5xD4).40(C2xC4) | 320,1491 |
(C5×D4).41(C2×C4) = C5×C23.24D4 | φ: C2×C4/C22 → C2 ⊆ Out C5×D4 | 160 | | (C5xD4).41(C2xC4) | 320,917 |
(C5×D4).42(C2×C4) = C5×C23.37D4 | φ: C2×C4/C22 → C2 ⊆ Out C5×D4 | 80 | | (C5xD4).42(C2xC4) | 320,919 |
(C5×D4).43(C2×C4) = C5×C42⋊C22 | φ: C2×C4/C22 → C2 ⊆ Out C5×D4 | 80 | 4 | (C5xD4).43(C2xC4) | 320,922 |
(C5×D4).44(C2×C4) = C10×C8○D4 | φ: trivial image | 160 | | (C5xD4).44(C2xC4) | 320,1569 |
(C5×D4).45(C2×C4) = C5×Q8○M4(2) | φ: trivial image | 80 | 4 | (C5xD4).45(C2xC4) | 320,1570 |