Extensions 1→N→G→Q→1 with N=C5xD4 and Q=C2xC4

Direct product G=NxQ with N=C5xD4 and Q=C2xC4
dρLabelID
D4xC2xC20160D4xC2xC20320,1517

Semidirect products G=N:Q with N=C5xD4 and Q=C2xC4
extensionφ:Q→Out NdρLabelID
(C5xD4):1(C2xC4) = D8xF5φ: C2xC4/C1C2xC4 ⊆ Out C5xD4408+(C5xD4):1(C2xC4)320,1068
(C5xD4):2(C2xC4) = D40:C4φ: C2xC4/C1C2xC4 ⊆ Out C5xD4408+(C5xD4):2(C2xC4)320,1069
(C5xD4):3(C2xC4) = C2xD20:C4φ: C2xC4/C2C4 ⊆ Out C5xD480(C5xD4):3(C2xC4)320,1104
(C5xD4):4(C2xC4) = C2xD4:F5φ: C2xC4/C2C4 ⊆ Out C5xD480(C5xD4):4(C2xC4)320,1106
(C5xD4):5(C2xC4) = D5:C4wrC2φ: C2xC4/C2C4 ⊆ Out C5xD4408(C5xD4):5(C2xC4)320,1130
(C5xD4):6(C2xC4) = C4oD4:F5φ: C2xC4/C2C4 ⊆ Out C5xD4408(C5xD4):6(C2xC4)320,1131
(C5xD4):7(C2xC4) = C2xD4xF5φ: C2xC4/C2C4 ⊆ Out C5xD440(C5xD4):7(C2xC4)320,1595
(C5xD4):8(C2xC4) = D10.C24φ: C2xC4/C2C4 ⊆ Out C5xD4408+(C5xD4):8(C2xC4)320,1596
(C5xD4):9(C2xC4) = C4oD4xF5φ: C2xC4/C2C4 ⊆ Out C5xD4408(C5xD4):9(C2xC4)320,1603
(C5xD4):10(C2xC4) = D5.2+ 1+4φ: C2xC4/C2C4 ⊆ Out C5xD4408(C5xD4):10(C2xC4)320,1604
(C5xD4):11(C2xC4) = Dic5:4D8φ: C2xC4/C2C22 ⊆ Out C5xD4160(C5xD4):11(C2xC4)320,383
(C5xD4):12(C2xC4) = D5xD4:C4φ: C2xC4/C2C22 ⊆ Out C5xD480(C5xD4):12(C2xC4)320,396
(C5xD4):13(C2xC4) = D4:(C4xD5)φ: C2xC4/C2C22 ⊆ Out C5xD4160(C5xD4):13(C2xC4)320,398
(C5xD4):14(C2xC4) = D4:D5:6C4φ: C2xC4/C2C22 ⊆ Out C5xD4160(C5xD4):14(C2xC4)320,412
(C5xD4):15(C2xC4) = D5xC4wrC2φ: C2xC4/C2C22 ⊆ Out C5xD4404(C5xD4):15(C2xC4)320,447
(C5xD4):16(C2xC4) = D8xDic5φ: C2xC4/C2C22 ⊆ Out C5xD4160(C5xD4):16(C2xC4)320,776
(C5xD4):17(C2xC4) = D8:Dic5φ: C2xC4/C2C22 ⊆ Out C5xD4160(C5xD4):17(C2xC4)320,779
(C5xD4):18(C2xC4) = C4xD4:D5φ: C2xC4/C4C2 ⊆ Out C5xD4160(C5xD4):18(C2xC4)320,640
(C5xD4):19(C2xC4) = C42.48D10φ: C2xC4/C4C2 ⊆ Out C5xD4160(C5xD4):19(C2xC4)320,641
(C5xD4):20(C2xC4) = C4xD4:2D5φ: C2xC4/C4C2 ⊆ Out C5xD4160(C5xD4):20(C2xC4)320,1208
(C5xD4):21(C2xC4) = C4xD4xD5φ: C2xC4/C4C2 ⊆ Out C5xD480(C5xD4):21(C2xC4)320,1216
(C5xD4):22(C2xC4) = C42:11D10φ: C2xC4/C4C2 ⊆ Out C5xD480(C5xD4):22(C2xC4)320,1217
(C5xD4):23(C2xC4) = C42.108D10φ: C2xC4/C4C2 ⊆ Out C5xD4160(C5xD4):23(C2xC4)320,1218
(C5xD4):24(C2xC4) = D8xC20φ: C2xC4/C4C2 ⊆ Out C5xD4160(C5xD4):24(C2xC4)320,938
(C5xD4):25(C2xC4) = C5xD8:C4φ: C2xC4/C4C2 ⊆ Out C5xD4160(C5xD4):25(C2xC4)320,943
(C5xD4):26(C2xC4) = C2xD4:Dic5φ: C2xC4/C22C2 ⊆ Out C5xD4160(C5xD4):26(C2xC4)320,841
(C5xD4):27(C2xC4) = C4oD4:Dic5φ: C2xC4/C22C2 ⊆ Out C5xD4160(C5xD4):27(C2xC4)320,859
(C5xD4):28(C2xC4) = C2xD4:2Dic5φ: C2xC4/C22C2 ⊆ Out C5xD480(C5xD4):28(C2xC4)320,862
(C5xD4):29(C2xC4) = C2xD4xDic5φ: C2xC4/C22C2 ⊆ Out C5xD4160(C5xD4):29(C2xC4)320,1467
(C5xD4):30(C2xC4) = C24.38D10φ: C2xC4/C22C2 ⊆ Out C5xD480(C5xD4):30(C2xC4)320,1470
(C5xD4):31(C2xC4) = C4oD4xDic5φ: C2xC4/C22C2 ⊆ Out C5xD4160(C5xD4):31(C2xC4)320,1498
(C5xD4):32(C2xC4) = C10.1062- 1+4φ: C2xC4/C22C2 ⊆ Out C5xD4160(C5xD4):32(C2xC4)320,1499
(C5xD4):33(C2xC4) = C10xD4:C4φ: C2xC4/C22C2 ⊆ Out C5xD4160(C5xD4):33(C2xC4)320,915
(C5xD4):34(C2xC4) = C5xC23.36D4φ: C2xC4/C22C2 ⊆ Out C5xD4160(C5xD4):34(C2xC4)320,918
(C5xD4):35(C2xC4) = C10xC4wrC2φ: C2xC4/C22C2 ⊆ Out C5xD480(C5xD4):35(C2xC4)320,921
(C5xD4):36(C2xC4) = C4oD4xC20φ: trivial image160(C5xD4):36(C2xC4)320,1519
(C5xD4):37(C2xC4) = C5xC22.11C24φ: trivial image80(C5xD4):37(C2xC4)320,1520
(C5xD4):38(C2xC4) = C5xC23.33C23φ: trivial image160(C5xD4):38(C2xC4)320,1522

Non-split extensions G=N.Q with N=C5xD4 and Q=C2xC4
extensionφ:Q→Out NdρLabelID
(C5xD4).1(C2xC4) = D8:5F5φ: C2xC4/C1C2xC4 ⊆ Out C5xD4808-(C5xD4).1(C2xC4)320,1070
(C5xD4).2(C2xC4) = D8:F5φ: C2xC4/C1C2xC4 ⊆ Out C5xD4808-(C5xD4).2(C2xC4)320,1071
(C5xD4).3(C2xC4) = SD16xF5φ: C2xC4/C1C2xC4 ⊆ Out C5xD4408(C5xD4).3(C2xC4)320,1072
(C5xD4).4(C2xC4) = SD16:F5φ: C2xC4/C1C2xC4 ⊆ Out C5xD4408(C5xD4).4(C2xC4)320,1073
(C5xD4).5(C2xC4) = SD16:3F5φ: C2xC4/C1C2xC4 ⊆ Out C5xD4808(C5xD4).5(C2xC4)320,1074
(C5xD4).6(C2xC4) = SD16:2F5φ: C2xC4/C1C2xC4 ⊆ Out C5xD4808(C5xD4).6(C2xC4)320,1075
(C5xD4).7(C2xC4) = (D4xC10):C4φ: C2xC4/C2C4 ⊆ Out C5xD4408+(C5xD4).7(C2xC4)320,1105
(C5xD4).8(C2xC4) = (C2xD4):6F5φ: C2xC4/C2C4 ⊆ Out C5xD4808-(C5xD4).8(C2xC4)320,1107
(C5xD4).9(C2xC4) = C4oD20:C4φ: C2xC4/C2C4 ⊆ Out C5xD4808(C5xD4).9(C2xC4)320,1132
(C5xD4).10(C2xC4) = D4:F5:C2φ: C2xC4/C2C4 ⊆ Out C5xD4808(C5xD4).10(C2xC4)320,1133
(C5xD4).11(C2xC4) = C2xD4.F5φ: C2xC4/C2C4 ⊆ Out C5xD4160(C5xD4).11(C2xC4)320,1593
(C5xD4).12(C2xC4) = Dic5.C24φ: C2xC4/C2C4 ⊆ Out C5xD4808-(C5xD4).12(C2xC4)320,1594
(C5xD4).13(C2xC4) = Dic5.21C24φ: C2xC4/C2C4 ⊆ Out C5xD4808(C5xD4).13(C2xC4)320,1601
(C5xD4).14(C2xC4) = Dic5.22C24φ: C2xC4/C2C4 ⊆ Out C5xD4808(C5xD4).14(C2xC4)320,1602
(C5xD4).15(C2xC4) = D4.D5:5C4φ: C2xC4/C2C22 ⊆ Out C5xD4160(C5xD4).15(C2xC4)320,384
(C5xD4).16(C2xC4) = Dic5:6SD16φ: C2xC4/C2C22 ⊆ Out C5xD4160(C5xD4).16(C2xC4)320,385
(C5xD4).17(C2xC4) = (D4xD5):C4φ: C2xC4/C2C22 ⊆ Out C5xD480(C5xD4).17(C2xC4)320,397
(C5xD4).18(C2xC4) = D4:2D5:C4φ: C2xC4/C2C22 ⊆ Out C5xD4160(C5xD4).18(C2xC4)320,399
(C5xD4).19(C2xC4) = C42:D10φ: C2xC4/C2C22 ⊆ Out C5xD4804(C5xD4).19(C2xC4)320,448
(C5xD4).20(C2xC4) = M4(2).22D10φ: C2xC4/C2C22 ⊆ Out C5xD4804(C5xD4).20(C2xC4)320,450
(C5xD4).21(C2xC4) = C42.196D10φ: C2xC4/C2C22 ⊆ Out C5xD4804(C5xD4).21(C2xC4)320,451
(C5xD4).22(C2xC4) = SD16xDic5φ: C2xC4/C2C22 ⊆ Out C5xD4160(C5xD4).22(C2xC4)320,788
(C5xD4).23(C2xC4) = SD16:Dic5φ: C2xC4/C2C22 ⊆ Out C5xD4160(C5xD4).23(C2xC4)320,791
(C5xD4).24(C2xC4) = D8:5Dic5φ: C2xC4/C2C22 ⊆ Out C5xD4804(C5xD4).24(C2xC4)320,823
(C5xD4).25(C2xC4) = D8:4Dic5φ: C2xC4/C2C22 ⊆ Out C5xD4804(C5xD4).25(C2xC4)320,824
(C5xD4).26(C2xC4) = C4xD4.D5φ: C2xC4/C4C2 ⊆ Out C5xD4160(C5xD4).26(C2xC4)320,644
(C5xD4).27(C2xC4) = C42.51D10φ: C2xC4/C4C2 ⊆ Out C5xD4160(C5xD4).27(C2xC4)320,645
(C5xD4).28(C2xC4) = C40.93D4φ: C2xC4/C4C2 ⊆ Out C5xD4804(C5xD4).28(C2xC4)320,771
(C5xD4).29(C2xC4) = C40.50D4φ: C2xC4/C4C2 ⊆ Out C5xD4804(C5xD4).29(C2xC4)320,772
(C5xD4).30(C2xC4) = D5xC8oD4φ: C2xC4/C4C2 ⊆ Out C5xD4804(C5xD4).30(C2xC4)320,1421
(C5xD4).31(C2xC4) = C20.72C24φ: C2xC4/C4C2 ⊆ Out C5xD4804(C5xD4).31(C2xC4)320,1422
(C5xD4).32(C2xC4) = SD16xC20φ: C2xC4/C4C2 ⊆ Out C5xD4160(C5xD4).32(C2xC4)320,939
(C5xD4).33(C2xC4) = C5xSD16:C4φ: C2xC4/C4C2 ⊆ Out C5xD4160(C5xD4).33(C2xC4)320,941
(C5xD4).34(C2xC4) = C5xC8oD8φ: C2xC4/C4C2 ⊆ Out C5xD4802(C5xD4).34(C2xC4)320,944
(C5xD4).35(C2xC4) = C5xC8.26D4φ: C2xC4/C4C2 ⊆ Out C5xD4804(C5xD4).35(C2xC4)320,945
(C5xD4).36(C2xC4) = (D4xC10):18C4φ: C2xC4/C22C2 ⊆ Out C5xD480(C5xD4).36(C2xC4)320,842
(C5xD4).37(C2xC4) = C20.(C2xD4)φ: C2xC4/C22C2 ⊆ Out C5xD4160(C5xD4).37(C2xC4)320,860
(C5xD4).38(C2xC4) = (D4xC10):21C4φ: C2xC4/C22C2 ⊆ Out C5xD4804(C5xD4).38(C2xC4)320,863
(C5xD4).39(C2xC4) = C2xD4.Dic5φ: C2xC4/C22C2 ⊆ Out C5xD4160(C5xD4).39(C2xC4)320,1490
(C5xD4).40(C2xC4) = C20.76C24φ: C2xC4/C22C2 ⊆ Out C5xD4804(C5xD4).40(C2xC4)320,1491
(C5xD4).41(C2xC4) = C5xC23.24D4φ: C2xC4/C22C2 ⊆ Out C5xD4160(C5xD4).41(C2xC4)320,917
(C5xD4).42(C2xC4) = C5xC23.37D4φ: C2xC4/C22C2 ⊆ Out C5xD480(C5xD4).42(C2xC4)320,919
(C5xD4).43(C2xC4) = C5xC42:C22φ: C2xC4/C22C2 ⊆ Out C5xD4804(C5xD4).43(C2xC4)320,922
(C5xD4).44(C2xC4) = C10xC8oD4φ: trivial image160(C5xD4).44(C2xC4)320,1569
(C5xD4).45(C2xC4) = C5xQ8oM4(2)φ: trivial image804(C5xD4).45(C2xC4)320,1570

׿
x
:
Z
F
o
wr
Q
<