d | ρ | Label | ID | ||
---|---|---|---|---|---|
C22xC4:Dic5 | 320 | C2^2xC4:Dic5 | 320,1457 |
extension | φ:Q→Out N | d | ρ | Label | ID |
---|---|---|---|---|---|
(C2xC4:Dic5):1C2 = D10:3(C4:C4) | φ: C2/C1 → C2 ⊆ Out C2xC4:Dic5 | 160 | (C2xC4:Dic5):1C2 | 320,295 | |
(C2xC4:Dic5):2C2 = C10.55(C4xD4) | φ: C2/C1 → C2 ⊆ Out C2xC4:Dic5 | 160 | (C2xC4:Dic5):2C2 | 320,297 | |
(C2xC4:Dic5):3C2 = (C2xC4).21D20 | φ: C2/C1 → C2 ⊆ Out C2xC4:Dic5 | 160 | (C2xC4:Dic5):3C2 | 320,301 | |
(C2xC4:Dic5):4C2 = (C2xC20).33D4 | φ: C2/C1 → C2 ⊆ Out C2xC4:Dic5 | 160 | (C2xC4:Dic5):4C2 | 320,304 | |
(C2xC4:Dic5):5C2 = C23.38D20 | φ: C2/C1 → C2 ⊆ Out C2xC4:Dic5 | 160 | (C2xC4:Dic5):5C2 | 320,362 | |
(C2xC4:Dic5):6C2 = C22.D40 | φ: C2/C1 → C2 ⊆ Out C2xC4:Dic5 | 160 | (C2xC4:Dic5):6C2 | 320,363 | |
(C2xC4:Dic5):7C2 = (C2xC4):6D20 | φ: C2/C1 → C2 ⊆ Out C2xC4:Dic5 | 160 | (C2xC4:Dic5):7C2 | 320,566 | |
(C2xC4:Dic5):8C2 = C24.6D10 | φ: C2/C1 → C2 ⊆ Out C2xC4:Dic5 | 160 | (C2xC4:Dic5):8C2 | 320,575 | |
(C2xC4:Dic5):9C2 = C24.7D10 | φ: C2/C1 → C2 ⊆ Out C2xC4:Dic5 | 160 | (C2xC4:Dic5):9C2 | 320,576 | |
(C2xC4:Dic5):10C2 = C24.47D10 | φ: C2/C1 → C2 ⊆ Out C2xC4:Dic5 | 160 | (C2xC4:Dic5):10C2 | 320,577 | |
(C2xC4:Dic5):11C2 = C24.8D10 | φ: C2/C1 → C2 ⊆ Out C2xC4:Dic5 | 160 | (C2xC4:Dic5):11C2 | 320,578 | |
(C2xC4:Dic5):12C2 = C23.14D20 | φ: C2/C1 → C2 ⊆ Out C2xC4:Dic5 | 160 | (C2xC4:Dic5):12C2 | 320,580 | |
(C2xC4:Dic5):13C2 = C24.16D10 | φ: C2/C1 → C2 ⊆ Out C2xC4:Dic5 | 160 | (C2xC4:Dic5):13C2 | 320,588 | |
(C2xC4:Dic5):14C2 = (C2xC20).56D4 | φ: C2/C1 → C2 ⊆ Out C2xC4:Dic5 | 160 | (C2xC4:Dic5):14C2 | 320,621 | |
(C2xC4:Dic5):15C2 = C2xD20:5C4 | φ: C2/C1 → C2 ⊆ Out C2xC4:Dic5 | 160 | (C2xC4:Dic5):15C2 | 320,739 | |
(C2xC4:Dic5):16C2 = C24.64D10 | φ: C2/C1 → C2 ⊆ Out C2xC4:Dic5 | 160 | (C2xC4:Dic5):16C2 | 320,839 | |
(C2xC4:Dic5):17C2 = C2xDic5.14D4 | φ: C2/C1 → C2 ⊆ Out C2xC4:Dic5 | 160 | (C2xC4:Dic5):17C2 | 320,1153 | |
(C2xC4:Dic5):18C2 = C2xC23.D10 | φ: C2/C1 → C2 ⊆ Out C2xC4:Dic5 | 160 | (C2xC4:Dic5):18C2 | 320,1154 | |
(C2xC4:Dic5):19C2 = C2xD10.12D4 | φ: C2/C1 → C2 ⊆ Out C2xC4:Dic5 | 160 | (C2xC4:Dic5):19C2 | 320,1160 | |
(C2xC4:Dic5):20C2 = C2xC22.D20 | φ: C2/C1 → C2 ⊆ Out C2xC4:Dic5 | 160 | (C2xC4:Dic5):20C2 | 320,1164 | |
(C2xC4:Dic5):21C2 = C2xD10:2Q8 | φ: C2/C1 → C2 ⊆ Out C2xC4:Dic5 | 160 | (C2xC4:Dic5):21C2 | 320,1181 | |
(C2xC4:Dic5):22C2 = C2xC4:C4:D5 | φ: C2/C1 → C2 ⊆ Out C2xC4:Dic5 | 160 | (C2xC4:Dic5):22C2 | 320,1184 | |
(C2xC4:Dic5):23C2 = C42.105D10 | φ: C2/C1 → C2 ⊆ Out C2xC4:Dic5 | 160 | (C2xC4:Dic5):23C2 | 320,1213 | |
(C2xC4:Dic5):24C2 = D4:6Dic10 | φ: C2/C1 → C2 ⊆ Out C2xC4:Dic5 | 160 | (C2xC4:Dic5):24C2 | 320,1215 | |
(C2xC4:Dic5):25C2 = D4:6D20 | φ: C2/C1 → C2 ⊆ Out C2xC4:Dic5 | 160 | (C2xC4:Dic5):25C2 | 320,1227 | |
(C2xC4:Dic5):26C2 = C42.119D10 | φ: C2/C1 → C2 ⊆ Out C2xC4:Dic5 | 160 | (C2xC4:Dic5):26C2 | 320,1237 | |
(C2xC4:Dic5):27C2 = C10.852- 1+4 | φ: C2/C1 → C2 ⊆ Out C2xC4:Dic5 | 160 | (C2xC4:Dic5):27C2 | 320,1337 | |
(C2xC4:Dic5):28C2 = C2xC20.48D4 | φ: C2/C1 → C2 ⊆ Out C2xC4:Dic5 | 160 | (C2xC4:Dic5):28C2 | 320,1456 | |
(C2xC4:Dic5):29C2 = C2xC20:7D4 | φ: C2/C1 → C2 ⊆ Out C2xC4:Dic5 | 160 | (C2xC4:Dic5):29C2 | 320,1462 | |
(C2xC4:Dic5):30C2 = D10:4(C4:C4) | φ: C2/C1 → C2 ⊆ Out C2xC4:Dic5 | 160 | (C2xC4:Dic5):30C2 | 320,614 | |
(C2xC4:Dic5):31C2 = (C2xC10).D8 | φ: C2/C1 → C2 ⊆ Out C2xC4:Dic5 | 160 | (C2xC4:Dic5):31C2 | 320,660 | |
(C2xC4:Dic5):32C2 = C4:D4.D5 | φ: C2/C1 → C2 ⊆ Out C2xC4:Dic5 | 160 | (C2xC4:Dic5):32C2 | 320,661 | |
(C2xC4:Dic5):33C2 = C23.49D20 | φ: C2/C1 → C2 ⊆ Out C2xC4:Dic5 | 160 | (C2xC4:Dic5):33C2 | 320,760 | |
(C2xC4:Dic5):34C2 = C2xD4:Dic5 | φ: C2/C1 → C2 ⊆ Out C2xC4:Dic5 | 160 | (C2xC4:Dic5):34C2 | 320,841 | |
(C2xC4:Dic5):35C2 = C24.19D10 | φ: C2/C1 → C2 ⊆ Out C2xC4:Dic5 | 160 | (C2xC4:Dic5):35C2 | 320,848 | |
(C2xC4:Dic5):36C2 = C4oD4:Dic5 | φ: C2/C1 → C2 ⊆ Out C2xC4:Dic5 | 160 | (C2xC4:Dic5):36C2 | 320,859 | |
(C2xC4:Dic5):37C2 = C2xD5xC4:C4 | φ: C2/C1 → C2 ⊆ Out C2xC4:Dic5 | 160 | (C2xC4:Dic5):37C2 | 320,1173 | |
(C2xC4:Dic5):38C2 = C2xC4:C4:7D5 | φ: C2/C1 → C2 ⊆ Out C2xC4:Dic5 | 160 | (C2xC4:Dic5):38C2 | 320,1174 | |
(C2xC4:Dic5):39C2 = C42.91D10 | φ: C2/C1 → C2 ⊆ Out C2xC4:Dic5 | 160 | (C2xC4:Dic5):39C2 | 320,1195 | |
(C2xC4:Dic5):40C2 = C10.732- 1+4 | φ: C2/C1 → C2 ⊆ Out C2xC4:Dic5 | 160 | (C2xC4:Dic5):40C2 | 320,1283 | |
(C2xC4:Dic5):41C2 = C10.1152+ 1+4 | φ: C2/C1 → C2 ⊆ Out C2xC4:Dic5 | 160 | (C2xC4:Dic5):41C2 | 320,1290 | |
(C2xC4:Dic5):42C2 = C10.1182+ 1+4 | φ: C2/C1 → C2 ⊆ Out C2xC4:Dic5 | 160 | (C2xC4:Dic5):42C2 | 320,1307 | |
(C2xC4:Dic5):43C2 = C10.772- 1+4 | φ: C2/C1 → C2 ⊆ Out C2xC4:Dic5 | 160 | (C2xC4:Dic5):43C2 | 320,1314 | |
(C2xC4:Dic5):44C2 = C2xD4xDic5 | φ: C2/C1 → C2 ⊆ Out C2xC4:Dic5 | 160 | (C2xC4:Dic5):44C2 | 320,1467 | |
(C2xC4:Dic5):45C2 = C2xC20:2D4 | φ: C2/C1 → C2 ⊆ Out C2xC4:Dic5 | 160 | (C2xC4:Dic5):45C2 | 320,1472 | |
(C2xC4:Dic5):46C2 = C2xD10:3Q8 | φ: C2/C1 → C2 ⊆ Out C2xC4:Dic5 | 160 | (C2xC4:Dic5):46C2 | 320,1485 | |
(C2xC4:Dic5):47C2 = C10.1062- 1+4 | φ: C2/C1 → C2 ⊆ Out C2xC4:Dic5 | 160 | (C2xC4:Dic5):47C2 | 320,1499 | |
(C2xC4:Dic5):48C2 = C10.1472+ 1+4 | φ: C2/C1 → C2 ⊆ Out C2xC4:Dic5 | 160 | (C2xC4:Dic5):48C2 | 320,1505 | |
(C2xC4:Dic5):49C2 = C2xC4xD20 | φ: trivial image | 160 | (C2xC4:Dic5):49C2 | 320,1145 | |
(C2xC4:Dic5):50C2 = C2xC23.21D10 | φ: trivial image | 160 | (C2xC4:Dic5):50C2 | 320,1458 |
extension | φ:Q→Out N | d | ρ | Label | ID |
---|---|---|---|---|---|
(C2xC4:Dic5).1C2 = C20.39C42 | φ: C2/C1 → C2 ⊆ Out C2xC4:Dic5 | 320 | (C2xC4:Dic5).1C2 | 320,109 | |
(C2xC4:Dic5).2C2 = (C2xC20):1C8 | φ: C2/C1 → C2 ⊆ Out C2xC4:Dic5 | 160 | (C2xC4:Dic5).2C2 | 320,251 | |
(C2xC4:Dic5).3C2 = C10.49(C4xD4) | φ: C2/C1 → C2 ⊆ Out C2xC4:Dic5 | 320 | (C2xC4:Dic5).3C2 | 320,274 | |
(C2xC4:Dic5).4C2 = C2.(C4xD20) | φ: C2/C1 → C2 ⊆ Out C2xC4:Dic5 | 320 | (C2xC4:Dic5).4C2 | 320,280 | |
(C2xC4:Dic5).5C2 = C4:Dic5:15C4 | φ: C2/C1 → C2 ⊆ Out C2xC4:Dic5 | 320 | (C2xC4:Dic5).5C2 | 320,281 | |
(C2xC4:Dic5).6C2 = C10.52(C4xD4) | φ: C2/C1 → C2 ⊆ Out C2xC4:Dic5 | 320 | (C2xC4:Dic5).6C2 | 320,282 | |
(C2xC4:Dic5).7C2 = (C2xDic5):Q8 | φ: C2/C1 → C2 ⊆ Out C2xC4:Dic5 | 320 | (C2xC4:Dic5).7C2 | 320,283 | |
(C2xC4:Dic5).8C2 = C2.(C20:Q8) | φ: C2/C1 → C2 ⊆ Out C2xC4:Dic5 | 320 | (C2xC4:Dic5).8C2 | 320,284 | |
(C2xC4:Dic5).9C2 = (C2xC20).28D4 | φ: C2/C1 → C2 ⊆ Out C2xC4:Dic5 | 320 | (C2xC4:Dic5).9C2 | 320,286 | |
(C2xC4:Dic5).10C2 = (C2xC4).Dic10 | φ: C2/C1 → C2 ⊆ Out C2xC4:Dic5 | 320 | (C2xC4:Dic5).10C2 | 320,287 | |
(C2xC4:Dic5).11C2 = C10.(C4:Q8) | φ: C2/C1 → C2 ⊆ Out C2xC4:Dic5 | 320 | (C2xC4:Dic5).11C2 | 320,288 | |
(C2xC4:Dic5).12C2 = C23.34D20 | φ: C2/C1 → C2 ⊆ Out C2xC4:Dic5 | 160 | (C2xC4:Dic5).12C2 | 320,348 | |
(C2xC4:Dic5).13C2 = C23.35D20 | φ: C2/C1 → C2 ⊆ Out C2xC4:Dic5 | 160 | (C2xC4:Dic5).13C2 | 320,349 | |
(C2xC4:Dic5).14C2 = C20:7(C4:C4) | φ: C2/C1 → C2 ⊆ Out C2xC4:Dic5 | 320 | (C2xC4:Dic5).14C2 | 320,555 | |
(C2xC4:Dic5).15C2 = (C2xC20):10Q8 | φ: C2/C1 → C2 ⊆ Out C2xC4:Dic5 | 320 | (C2xC4:Dic5).15C2 | 320,556 | |
(C2xC4:Dic5).16C2 = C42:8Dic5 | φ: C2/C1 → C2 ⊆ Out C2xC4:Dic5 | 320 | (C2xC4:Dic5).16C2 | 320,562 | |
(C2xC4:Dic5).17C2 = C42:9Dic5 | φ: C2/C1 → C2 ⊆ Out C2xC4:Dic5 | 320 | (C2xC4:Dic5).17C2 | 320,563 | |
(C2xC4:Dic5).18C2 = C4:C4:5Dic5 | φ: C2/C1 → C2 ⊆ Out C2xC4:Dic5 | 320 | (C2xC4:Dic5).18C2 | 320,608 | |
(C2xC4:Dic5).19C2 = (C2xC20).53D4 | φ: C2/C1 → C2 ⊆ Out C2xC4:Dic5 | 320 | (C2xC4:Dic5).19C2 | 320,610 | |
(C2xC4:Dic5).20C2 = (C2xC20).54D4 | φ: C2/C1 → C2 ⊆ Out C2xC4:Dic5 | 320 | (C2xC4:Dic5).20C2 | 320,611 | |
(C2xC4:Dic5).21C2 = (C2xC20).55D4 | φ: C2/C1 → C2 ⊆ Out C2xC4:Dic5 | 320 | (C2xC4:Dic5).21C2 | 320,613 | |
(C2xC4:Dic5).22C2 = C2xC20.44D4 | φ: C2/C1 → C2 ⊆ Out C2xC4:Dic5 | 320 | (C2xC4:Dic5).22C2 | 320,730 | |
(C2xC4:Dic5).23C2 = C2xC40:6C4 | φ: C2/C1 → C2 ⊆ Out C2xC4:Dic5 | 320 | (C2xC4:Dic5).23C2 | 320,731 | |
(C2xC4:Dic5).24C2 = C2xC40:5C4 | φ: C2/C1 → C2 ⊆ Out C2xC4:Dic5 | 320 | (C2xC4:Dic5).24C2 | 320,732 | |
(C2xC4:Dic5).25C2 = C2xC20:2Q8 | φ: C2/C1 → C2 ⊆ Out C2xC4:Dic5 | 320 | (C2xC4:Dic5).25C2 | 320,1140 | |
(C2xC4:Dic5).26C2 = C2xC20.6Q8 | φ: C2/C1 → C2 ⊆ Out C2xC4:Dic5 | 320 | (C2xC4:Dic5).26C2 | 320,1141 | |
(C2xC4:Dic5).27C2 = C2xDic5.Q8 | φ: C2/C1 → C2 ⊆ Out C2xC4:Dic5 | 320 | (C2xC4:Dic5).27C2 | 320,1170 | |
(C2xC4:Dic5).28C2 = C20.31C42 | φ: C2/C1 → C2 ⊆ Out C2xC4:Dic5 | 320 | (C2xC4:Dic5).28C2 | 320,87 | |
(C2xC4:Dic5).29C2 = M4(2):Dic5 | φ: C2/C1 → C2 ⊆ Out C2xC4:Dic5 | 160 | (C2xC4:Dic5).29C2 | 320,112 | |
(C2xC4:Dic5).30C2 = C2xC10.D8 | φ: C2/C1 → C2 ⊆ Out C2xC4:Dic5 | 320 | (C2xC4:Dic5).30C2 | 320,589 | |
(C2xC4:Dic5).31C2 = C2xC20.Q8 | φ: C2/C1 → C2 ⊆ Out C2xC4:Dic5 | 320 | (C2xC4:Dic5).31C2 | 320,590 | |
(C2xC4:Dic5).32C2 = C20:4(C4:C4) | φ: C2/C1 → C2 ⊆ Out C2xC4:Dic5 | 320 | (C2xC4:Dic5).32C2 | 320,600 | |
(C2xC4:Dic5).33C2 = C4:C4xDic5 | φ: C2/C1 → C2 ⊆ Out C2xC4:Dic5 | 320 | (C2xC4:Dic5).33C2 | 320,602 | |
(C2xC4:Dic5).34C2 = C20:5(C4:C4) | φ: C2/C1 → C2 ⊆ Out C2xC4:Dic5 | 320 | (C2xC4:Dic5).34C2 | 320,603 | |
(C2xC4:Dic5).35C2 = C20.48(C4:C4) | φ: C2/C1 → C2 ⊆ Out C2xC4:Dic5 | 320 | (C2xC4:Dic5).35C2 | 320,604 | |
(C2xC4:Dic5).36C2 = C20:6(C4:C4) | φ: C2/C1 → C2 ⊆ Out C2xC4:Dic5 | 320 | (C2xC4:Dic5).36C2 | 320,612 | |
(C2xC4:Dic5).37C2 = C20.64(C4:C4) | φ: C2/C1 → C2 ⊆ Out C2xC4:Dic5 | 160 | (C2xC4:Dic5).37C2 | 320,622 | |
(C2xC4:Dic5).38C2 = C22:Q8.D5 | φ: C2/C1 → C2 ⊆ Out C2xC4:Dic5 | 160 | (C2xC4:Dic5).38C2 | 320,670 | |
(C2xC4:Dic5).39C2 = (C2xC10).Q16 | φ: C2/C1 → C2 ⊆ Out C2xC4:Dic5 | 160 | (C2xC4:Dic5).39C2 | 320,671 | |
(C2xC4:Dic5).40C2 = C23.47D20 | φ: C2/C1 → C2 ⊆ Out C2xC4:Dic5 | 160 | (C2xC4:Dic5).40C2 | 320,748 | |
(C2xC4:Dic5).41C2 = C2xQ8:Dic5 | φ: C2/C1 → C2 ⊆ Out C2xC4:Dic5 | 320 | (C2xC4:Dic5).41C2 | 320,851 | |
(C2xC4:Dic5).42C2 = (Q8xC10):17C4 | φ: C2/C1 → C2 ⊆ Out C2xC4:Dic5 | 320 | (C2xC4:Dic5).42C2 | 320,857 | |
(C2xC4:Dic5).43C2 = C2xC20:Q8 | φ: C2/C1 → C2 ⊆ Out C2xC4:Dic5 | 320 | (C2xC4:Dic5).43C2 | 320,1169 | |
(C2xC4:Dic5).44C2 = C2xC4.Dic10 | φ: C2/C1 → C2 ⊆ Out C2xC4:Dic5 | 320 | (C2xC4:Dic5).44C2 | 320,1171 | |
(C2xC4:Dic5).45C2 = C42.90D10 | φ: C2/C1 → C2 ⊆ Out C2xC4:Dic5 | 160 | (C2xC4:Dic5).45C2 | 320,1191 | |
(C2xC4:Dic5).46C2 = C2xQ8xDic5 | φ: C2/C1 → C2 ⊆ Out C2xC4:Dic5 | 320 | (C2xC4:Dic5).46C2 | 320,1483 | |
(C2xC4:Dic5).47C2 = C4xC4:Dic5 | φ: trivial image | 320 | (C2xC4:Dic5).47C2 | 320,561 | |
(C2xC4:Dic5).48C2 = C2xC4xDic10 | φ: trivial image | 320 | (C2xC4:Dic5).48C2 | 320,1139 |