extension | φ:Q→Out N | d | ρ | Label | ID |
(C4×C5⋊D4)⋊1C2 = C24.27D10 | φ: C2/C1 → C2 ⊆ Out C4×C5⋊D4 | 80 | | (C4xC5:D4):1C2 | 320,1162 |
(C4×C5⋊D4)⋊2C2 = C24.31D10 | φ: C2/C1 → C2 ⊆ Out C4×C5⋊D4 | 80 | | (C4xC5:D4):2C2 | 320,1167 |
(C4×C5⋊D4)⋊3C2 = C42.102D10 | φ: C2/C1 → C2 ⊆ Out C4×C5⋊D4 | 160 | | (C4xC5:D4):3C2 | 320,1210 |
(C4×C5⋊D4)⋊4C2 = C42.228D10 | φ: C2/C1 → C2 ⊆ Out C4×C5⋊D4 | 160 | | (C4xC5:D4):4C2 | 320,1220 |
(C4×C5⋊D4)⋊5C2 = C42.229D10 | φ: C2/C1 → C2 ⊆ Out C4×C5⋊D4 | 160 | | (C4xC5:D4):5C2 | 320,1229 |
(C4×C5⋊D4)⋊6C2 = C10.612+ 1+4 | φ: C2/C1 → C2 ⊆ Out C4×C5⋊D4 | 80 | | (C4xC5:D4):6C2 | 320,1329 |
(C4×C5⋊D4)⋊7C2 = C10.632+ 1+4 | φ: C2/C1 → C2 ⊆ Out C4×C5⋊D4 | 160 | | (C4xC5:D4):7C2 | 320,1332 |
(C4×C5⋊D4)⋊8C2 = C10.842- 1+4 | φ: C2/C1 → C2 ⊆ Out C4×C5⋊D4 | 160 | | (C4xC5:D4):8C2 | 320,1334 |
(C4×C5⋊D4)⋊9C2 = C10.662+ 1+4 | φ: C2/C1 → C2 ⊆ Out C4×C5⋊D4 | 160 | | (C4xC5:D4):9C2 | 320,1335 |
(C4×C5⋊D4)⋊10C2 = C10.2- 1+4 | φ: C2/C1 → C2 ⊆ Out C4×C5⋊D4 | 160 | | (C4xC5:D4):10C2 | 320,1179 |
(C4×C5⋊D4)⋊11C2 = C10.112+ 1+4 | φ: C2/C1 → C2 ⊆ Out C4×C5⋊D4 | 160 | | (C4xC5:D4):11C2 | 320,1186 |
(C4×C5⋊D4)⋊12C2 = C42.95D10 | φ: C2/C1 → C2 ⊆ Out C4×C5⋊D4 | 160 | | (C4xC5:D4):12C2 | 320,1202 |
(C4×C5⋊D4)⋊13C2 = C42.97D10 | φ: C2/C1 → C2 ⊆ Out C4×C5⋊D4 | 160 | | (C4xC5:D4):13C2 | 320,1204 |
(C4×C5⋊D4)⋊14C2 = Dic10⋊19D4 | φ: C2/C1 → C2 ⊆ Out C4×C5⋊D4 | 160 | | (C4xC5:D4):14C2 | 320,1270 |
(C4×C5⋊D4)⋊15C2 = Dic10⋊20D4 | φ: C2/C1 → C2 ⊆ Out C4×C5⋊D4 | 160 | | (C4xC5:D4):15C2 | 320,1271 |
(C4×C5⋊D4)⋊16C2 = D20⋊19D4 | φ: C2/C1 → C2 ⊆ Out C4×C5⋊D4 | 80 | | (C4xC5:D4):16C2 | 320,1281 |
(C4×C5⋊D4)⋊17C2 = C10.732- 1+4 | φ: C2/C1 → C2 ⊆ Out C4×C5⋊D4 | 160 | | (C4xC5:D4):17C2 | 320,1283 |
(C4×C5⋊D4)⋊18C2 = D20⋊20D4 | φ: C2/C1 → C2 ⊆ Out C4×C5⋊D4 | 80 | | (C4xC5:D4):18C2 | 320,1284 |
(C4×C5⋊D4)⋊19C2 = C10.432+ 1+4 | φ: C2/C1 → C2 ⊆ Out C4×C5⋊D4 | 160 | | (C4xC5:D4):19C2 | 320,1286 |
(C4×C5⋊D4)⋊20C2 = C10.452+ 1+4 | φ: C2/C1 → C2 ⊆ Out C4×C5⋊D4 | 160 | | (C4xC5:D4):20C2 | 320,1288 |
(C4×C5⋊D4)⋊21C2 = C10.1152+ 1+4 | φ: C2/C1 → C2 ⊆ Out C4×C5⋊D4 | 160 | | (C4xC5:D4):21C2 | 320,1290 |
(C4×C5⋊D4)⋊22C2 = D20⋊21D4 | φ: C2/C1 → C2 ⊆ Out C4×C5⋊D4 | 80 | | (C4xC5:D4):22C2 | 320,1302 |
(C4×C5⋊D4)⋊23C2 = D20⋊22D4 | φ: C2/C1 → C2 ⊆ Out C4×C5⋊D4 | 160 | | (C4xC5:D4):23C2 | 320,1303 |
(C4×C5⋊D4)⋊24C2 = Dic10⋊22D4 | φ: C2/C1 → C2 ⊆ Out C4×C5⋊D4 | 160 | | (C4xC5:D4):24C2 | 320,1305 |
(C4×C5⋊D4)⋊25C2 = D4×C5⋊D4 | φ: C2/C1 → C2 ⊆ Out C4×C5⋊D4 | 80 | | (C4xC5:D4):25C2 | 320,1473 |
(C4×C5⋊D4)⋊26C2 = C24.42D10 | φ: C2/C1 → C2 ⊆ Out C4×C5⋊D4 | 80 | | (C4xC5:D4):26C2 | 320,1478 |
(C4×C5⋊D4)⋊27C2 = C10.452- 1+4 | φ: C2/C1 → C2 ⊆ Out C4×C5⋊D4 | 160 | | (C4xC5:D4):27C2 | 320,1489 |
(C4×C5⋊D4)⋊28C2 = C10.1042- 1+4 | φ: C2/C1 → C2 ⊆ Out C4×C5⋊D4 | 160 | | (C4xC5:D4):28C2 | 320,1496 |
(C4×C5⋊D4)⋊29C2 = C10.1452+ 1+4 | φ: C2/C1 → C2 ⊆ Out C4×C5⋊D4 | 80 | | (C4xC5:D4):29C2 | 320,1501 |
(C4×C5⋊D4)⋊30C2 = C10.1072- 1+4 | φ: C2/C1 → C2 ⊆ Out C4×C5⋊D4 | 160 | | (C4xC5:D4):30C2 | 320,1503 |
(C4×C5⋊D4)⋊31C2 = C10.1482+ 1+4 | φ: C2/C1 → C2 ⊆ Out C4×C5⋊D4 | 160 | | (C4xC5:D4):31C2 | 320,1506 |
(C4×C5⋊D4)⋊32C2 = C42.277D10 | φ: C2/C1 → C2 ⊆ Out C4×C5⋊D4 | 160 | | (C4xC5:D4):32C2 | 320,1151 |
(C4×C5⋊D4)⋊33C2 = C24.24D10 | φ: C2/C1 → C2 ⊆ Out C4×C5⋊D4 | 80 | | (C4xC5:D4):33C2 | 320,1158 |
(C4×C5⋊D4)⋊34C2 = C24.30D10 | φ: C2/C1 → C2 ⊆ Out C4×C5⋊D4 | 80 | | (C4xC5:D4):34C2 | 320,1166 |
(C4×C5⋊D4)⋊35C2 = C10.82+ 1+4 | φ: C2/C1 → C2 ⊆ Out C4×C5⋊D4 | 160 | | (C4xC5:D4):35C2 | 320,1176 |
(C4×C5⋊D4)⋊36C2 = C10.62- 1+4 | φ: C2/C1 → C2 ⊆ Out C4×C5⋊D4 | 160 | | (C4xC5:D4):36C2 | 320,1187 |
(C4×C5⋊D4)⋊37C2 = C4×D4⋊2D5 | φ: C2/C1 → C2 ⊆ Out C4×C5⋊D4 | 160 | | (C4xC5:D4):37C2 | 320,1208 |
(C4×C5⋊D4)⋊38C2 = C42.104D10 | φ: C2/C1 → C2 ⊆ Out C4×C5⋊D4 | 160 | | (C4xC5:D4):38C2 | 320,1212 |
(C4×C5⋊D4)⋊39C2 = C4×D4×D5 | φ: C2/C1 → C2 ⊆ Out C4×C5⋊D4 | 80 | | (C4xC5:D4):39C2 | 320,1216 |
(C4×C5⋊D4)⋊40C2 = C42⋊11D10 | φ: C2/C1 → C2 ⊆ Out C4×C5⋊D4 | 80 | | (C4xC5:D4):40C2 | 320,1217 |
(C4×C5⋊D4)⋊41C2 = C42.108D10 | φ: C2/C1 → C2 ⊆ Out C4×C5⋊D4 | 160 | | (C4xC5:D4):41C2 | 320,1218 |
(C4×C5⋊D4)⋊42C2 = C42⋊12D10 | φ: C2/C1 → C2 ⊆ Out C4×C5⋊D4 | 80 | | (C4xC5:D4):42C2 | 320,1219 |
(C4×C5⋊D4)⋊43C2 = C42⋊16D10 | φ: C2/C1 → C2 ⊆ Out C4×C5⋊D4 | 80 | | (C4xC5:D4):43C2 | 320,1228 |
(C4×C5⋊D4)⋊44C2 = C42.113D10 | φ: C2/C1 → C2 ⊆ Out C4×C5⋊D4 | 160 | | (C4xC5:D4):44C2 | 320,1230 |
(C4×C5⋊D4)⋊45C2 = C42.114D10 | φ: C2/C1 → C2 ⊆ Out C4×C5⋊D4 | 160 | | (C4xC5:D4):45C2 | 320,1231 |
(C4×C5⋊D4)⋊46C2 = C42⋊17D10 | φ: C2/C1 → C2 ⊆ Out C4×C5⋊D4 | 80 | | (C4xC5:D4):46C2 | 320,1232 |
(C4×C5⋊D4)⋊47C2 = C42.118D10 | φ: C2/C1 → C2 ⊆ Out C4×C5⋊D4 | 160 | | (C4xC5:D4):47C2 | 320,1236 |
(C4×C5⋊D4)⋊48C2 = C10.622+ 1+4 | φ: C2/C1 → C2 ⊆ Out C4×C5⋊D4 | 80 | | (C4xC5:D4):48C2 | 320,1331 |
(C4×C5⋊D4)⋊49C2 = C10.642+ 1+4 | φ: C2/C1 → C2 ⊆ Out C4×C5⋊D4 | 160 | | (C4xC5:D4):49C2 | 320,1333 |
(C4×C5⋊D4)⋊50C2 = C10.672+ 1+4 | φ: C2/C1 → C2 ⊆ Out C4×C5⋊D4 | 160 | | (C4xC5:D4):50C2 | 320,1336 |
(C4×C5⋊D4)⋊51C2 = C24.72D10 | φ: C2/C1 → C2 ⊆ Out C4×C5⋊D4 | 80 | | (C4xC5:D4):51C2 | 320,1463 |
(C4×C5⋊D4)⋊52C2 = C42.93D10 | φ: C2/C1 → C2 ⊆ Out C4×C5⋊D4 | 160 | | (C4xC5:D4):52C2 | 320,1200 |
(C4×C5⋊D4)⋊53C2 = C10.342+ 1+4 | φ: C2/C1 → C2 ⊆ Out C4×C5⋊D4 | 160 | | (C4xC5:D4):53C2 | 320,1273 |
(C4×C5⋊D4)⋊54C2 = C10.402+ 1+4 | φ: C2/C1 → C2 ⊆ Out C4×C5⋊D4 | 80 | | (C4xC5:D4):54C2 | 320,1282 |
(C4×C5⋊D4)⋊55C2 = C10.422+ 1+4 | φ: C2/C1 → C2 ⊆ Out C4×C5⋊D4 | 80 | | (C4xC5:D4):55C2 | 320,1285 |
(C4×C5⋊D4)⋊56C2 = C10.442+ 1+4 | φ: C2/C1 → C2 ⊆ Out C4×C5⋊D4 | 160 | | (C4xC5:D4):56C2 | 320,1287 |
(C4×C5⋊D4)⋊57C2 = C10.532+ 1+4 | φ: C2/C1 → C2 ⊆ Out C4×C5⋊D4 | 80 | | (C4xC5:D4):57C2 | 320,1309 |
(C4×C5⋊D4)⋊58C2 = C10.202- 1+4 | φ: C2/C1 → C2 ⊆ Out C4×C5⋊D4 | 160 | | (C4xC5:D4):58C2 | 320,1310 |
(C4×C5⋊D4)⋊59C2 = C10.222- 1+4 | φ: C2/C1 → C2 ⊆ Out C4×C5⋊D4 | 160 | | (C4xC5:D4):59C2 | 320,1312 |
(C4×C5⋊D4)⋊60C2 = (C2×C20)⋊15D4 | φ: C2/C1 → C2 ⊆ Out C4×C5⋊D4 | 80 | | (C4xC5:D4):60C2 | 320,1500 |
(C4×C5⋊D4)⋊61C2 = (C2×C20)⋊17D4 | φ: C2/C1 → C2 ⊆ Out C4×C5⋊D4 | 160 | | (C4xC5:D4):61C2 | 320,1504 |
(C4×C5⋊D4)⋊62C2 = C4×C4○D20 | φ: trivial image | 160 | | (C4xC5:D4):62C2 | 320,1146 |
extension | φ:Q→Out N | d | ρ | Label | ID |
(C4×C5⋊D4).1C2 = D10⋊4M4(2) | φ: C2/C1 → C2 ⊆ Out C4×C5⋊D4 | 160 | | (C4xC5:D4).1C2 | 320,355 |
(C4×C5⋊D4).2C2 = Dic5⋊2M4(2) | φ: C2/C1 → C2 ⊆ Out C4×C5⋊D4 | 160 | | (C4xC5:D4).2C2 | 320,356 |
(C4×C5⋊D4).3C2 = C10.102+ 1+4 | φ: C2/C1 → C2 ⊆ Out C4×C5⋊D4 | 160 | | (C4xC5:D4).3C2 | 320,1183 |
(C4×C5⋊D4).4C2 = C10.52- 1+4 | φ: C2/C1 → C2 ⊆ Out C4×C5⋊D4 | 160 | | (C4xC5:D4).4C2 | 320,1185 |
(C4×C5⋊D4).5C2 = C42.94D10 | φ: C2/C1 → C2 ⊆ Out C4×C5⋊D4 | 160 | | (C4xC5:D4).5C2 | 320,1201 |
(C4×C5⋊D4).6C2 = C42.98D10 | φ: C2/C1 → C2 ⊆ Out C4×C5⋊D4 | 160 | | (C4xC5:D4).6C2 | 320,1205 |
(C4×C5⋊D4).7C2 = Dic10⋊21D4 | φ: C2/C1 → C2 ⊆ Out C4×C5⋊D4 | 160 | | (C4xC5:D4).7C2 | 320,1304 |
(C4×C5⋊D4).8C2 = C10.1182+ 1+4 | φ: C2/C1 → C2 ⊆ Out C4×C5⋊D4 | 160 | | (C4xC5:D4).8C2 | 320,1307 |
(C4×C5⋊D4).9C2 = C10.212- 1+4 | φ: C2/C1 → C2 ⊆ Out C4×C5⋊D4 | 160 | | (C4xC5:D4).9C2 | 320,1311 |
(C4×C5⋊D4).10C2 = C10.232- 1+4 | φ: C2/C1 → C2 ⊆ Out C4×C5⋊D4 | 160 | | (C4xC5:D4).10C2 | 320,1313 |
(C4×C5⋊D4).11C2 = C10.772- 1+4 | φ: C2/C1 → C2 ⊆ Out C4×C5⋊D4 | 160 | | (C4xC5:D4).11C2 | 320,1314 |
(C4×C5⋊D4).12C2 = Q8×C5⋊D4 | φ: C2/C1 → C2 ⊆ Out C4×C5⋊D4 | 160 | | (C4xC5:D4).12C2 | 320,1487 |
(C4×C5⋊D4).13C2 = C5⋊5(C8×D4) | φ: C2/C1 → C2 ⊆ Out C4×C5⋊D4 | 160 | | (C4xC5:D4).13C2 | 320,352 |
(C4×C5⋊D4).14C2 = C5⋊2C8⋊26D4 | φ: C2/C1 → C2 ⊆ Out C4×C5⋊D4 | 160 | | (C4xC5:D4).14C2 | 320,357 |
(C4×C5⋊D4).15C2 = C40⋊32D4 | φ: C2/C1 → C2 ⊆ Out C4×C5⋊D4 | 160 | | (C4xC5:D4).15C2 | 320,738 |
(C4×C5⋊D4).16C2 = C40⋊D4 | φ: C2/C1 → C2 ⊆ Out C4×C5⋊D4 | 160 | | (C4xC5:D4).16C2 | 320,754 |
(C4×C5⋊D4).17C2 = C40⋊18D4 | φ: C2/C1 → C2 ⊆ Out C4×C5⋊D4 | 160 | | (C4xC5:D4).17C2 | 320,755 |
(C4×C5⋊D4).18C2 = C10.522+ 1+4 | φ: C2/C1 → C2 ⊆ Out C4×C5⋊D4 | 160 | | (C4xC5:D4).18C2 | 320,1308 |
(C4×C5⋊D4).19C2 = C8×C5⋊D4 | φ: trivial image | 160 | | (C4xC5:D4).19C2 | 320,736 |