Copied to
clipboard

G = C10.62- 1+4order 320 = 26·5

6th non-split extension by C10 of 2- 1+4 acting via 2- 1+4/C2×Q8=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C10.62- 1+4, C10.122+ 1+4, C4⋊C4.265D10, D10⋊Q83C2, C207D4.6C2, C20.48D45C2, (C2×C10).59C24, D10.13D43C2, (C2×C20).139C23, Dic5.Q83C2, (C2×D20).24C22, (C22×C4).184D10, C4⋊Dic5.30C22, C2.15(D46D10), C22.93(C23×D5), C22.24(C4○D20), (C2×Dic5).20C23, (C22×D5).17C23, C23.230(C22×D5), C23.D5.89C22, D10⋊C4.62C22, C23.23D1026C2, (C22×C10).408C23, (C22×C20).361C22, C2.9(Q8.10D10), C51(C22.33C24), (C4×Dic5).213C22, (C2×Dic10).24C22, C10.D4.73C22, (C2×C4⋊C4)⋊24D5, (C10×C4⋊C4)⋊21C2, C4⋊C4⋊D53C2, (C4×C5⋊D4)⋊36C2, C2.28(C2×C4○D20), C10.26(C2×C4○D4), (C2×C4×D5).243C22, (C5×C4⋊C4).300C22, (C2×C4).147(C22×D5), (C2×C10).109(C4○D4), (C2×C5⋊D4).104C22, SmallGroup(320,1187)

Series: Derived Chief Lower central Upper central

C1C2×C10 — C10.62- 1+4
C1C5C10C2×C10C22×D5C2×C5⋊D4C4×C5⋊D4 — C10.62- 1+4
C5C2×C10 — C10.62- 1+4
C1C22C2×C4⋊C4

Generators and relations for C10.62- 1+4
 G = < a,b,c,d,e | a10=b4=c2=1, d2=b2, e2=a5b2, bab-1=cac=a-1, ad=da, ae=ea, cbc=b-1, dbd-1=a5b, be=eb, dcd-1=a5c, ce=ec, ede-1=b2d >

Subgroups: 750 in 218 conjugacy classes, 95 normal (31 characteristic)
C1, C2 [×3], C2 [×4], C4 [×12], C22, C22 [×2], C22 [×8], C5, C2×C4 [×2], C2×C4 [×4], C2×C4 [×12], D4 [×5], Q8, C23, C23 [×2], D5 [×2], C10 [×3], C10 [×2], C42 [×2], C22⋊C4 [×10], C4⋊C4 [×4], C4⋊C4 [×10], C22×C4 [×3], C22×C4 [×2], C2×D4 [×3], C2×Q8, Dic5 [×6], C20 [×6], D10 [×6], C2×C10, C2×C10 [×2], C2×C10 [×2], C2×C4⋊C4, C4×D4 [×2], C4⋊D4, C22⋊Q8 [×3], C22.D4 [×4], C42.C2 [×2], C422C2 [×2], Dic10, C4×D5 [×2], D20, C2×Dic5 [×6], C5⋊D4 [×4], C2×C20 [×2], C2×C20 [×4], C2×C20 [×4], C22×D5 [×2], C22×C10, C22.33C24, C4×Dic5 [×2], C10.D4 [×8], C4⋊Dic5 [×2], D10⋊C4 [×8], C23.D5 [×2], C5×C4⋊C4 [×4], C2×Dic10, C2×C4×D5 [×2], C2×D20, C2×C5⋊D4 [×2], C22×C20 [×3], Dic5.Q8 [×2], D10.13D4 [×2], D10⋊Q8 [×2], C4⋊C4⋊D5 [×2], C20.48D4, C4×C5⋊D4 [×2], C23.23D10 [×2], C207D4, C10×C4⋊C4, C10.62- 1+4
Quotients: C1, C2 [×15], C22 [×35], C23 [×15], D5, C4○D4 [×2], C24, D10 [×7], C2×C4○D4, 2+ 1+4, 2- 1+4, C22×D5 [×7], C22.33C24, C4○D20 [×2], C23×D5, C2×C4○D20, D46D10, Q8.10D10, C10.62- 1+4

Smallest permutation representation of C10.62- 1+4
On 160 points
Generators in S160
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160)
(1 110 23 93)(2 109 24 92)(3 108 25 91)(4 107 26 100)(5 106 27 99)(6 105 28 98)(7 104 29 97)(8 103 30 96)(9 102 21 95)(10 101 22 94)(11 85 158 78)(12 84 159 77)(13 83 160 76)(14 82 151 75)(15 81 152 74)(16 90 153 73)(17 89 154 72)(18 88 155 71)(19 87 156 80)(20 86 157 79)(31 122 48 115)(32 121 49 114)(33 130 50 113)(34 129 41 112)(35 128 42 111)(36 127 43 120)(37 126 44 119)(38 125 45 118)(39 124 46 117)(40 123 47 116)(51 140 68 147)(52 139 69 146)(53 138 70 145)(54 137 61 144)(55 136 62 143)(56 135 63 142)(57 134 64 141)(58 133 65 150)(59 132 66 149)(60 131 67 148)
(2 10)(3 9)(4 8)(5 7)(11 16)(12 15)(13 14)(17 20)(18 19)(21 25)(22 24)(26 30)(27 29)(31 47)(32 46)(33 45)(34 44)(35 43)(36 42)(37 41)(38 50)(39 49)(40 48)(51 55)(52 54)(56 60)(57 59)(61 69)(62 68)(63 67)(64 66)(71 87)(72 86)(73 85)(74 84)(75 83)(76 82)(77 81)(78 90)(79 89)(80 88)(91 102)(92 101)(93 110)(94 109)(95 108)(96 107)(97 106)(98 105)(99 104)(100 103)(111 120)(112 119)(113 118)(114 117)(115 116)(121 124)(122 123)(125 130)(126 129)(127 128)(131 142)(132 141)(133 150)(134 149)(135 148)(136 147)(137 146)(138 145)(139 144)(140 143)(151 160)(152 159)(153 158)(154 157)(155 156)
(1 118 23 125)(2 119 24 126)(3 120 25 127)(4 111 26 128)(5 112 27 129)(6 113 28 130)(7 114 29 121)(8 115 30 122)(9 116 21 123)(10 117 22 124)(11 58 158 65)(12 59 159 66)(13 60 160 67)(14 51 151 68)(15 52 152 69)(16 53 153 70)(17 54 154 61)(18 55 155 62)(19 56 156 63)(20 57 157 64)(31 91 48 108)(32 92 49 109)(33 93 50 110)(34 94 41 101)(35 95 42 102)(36 96 43 103)(37 97 44 104)(38 98 45 105)(39 99 46 106)(40 100 47 107)(71 148 88 131)(72 149 89 132)(73 150 90 133)(74 141 81 134)(75 142 82 135)(76 143 83 136)(77 144 84 137)(78 145 85 138)(79 146 86 139)(80 147 87 140)
(1 53 28 65)(2 54 29 66)(3 55 30 67)(4 56 21 68)(5 57 22 69)(6 58 23 70)(7 59 24 61)(8 60 25 62)(9 51 26 63)(10 52 27 64)(11 125 153 113)(12 126 154 114)(13 127 155 115)(14 128 156 116)(15 129 157 117)(16 130 158 118)(17 121 159 119)(18 122 160 120)(19 123 151 111)(20 124 152 112)(31 83 43 71)(32 84 44 72)(33 85 45 73)(34 86 46 74)(35 87 47 75)(36 88 48 76)(37 89 49 77)(38 90 50 78)(39 81 41 79)(40 82 42 80)(91 143 103 131)(92 144 104 132)(93 145 105 133)(94 146 106 134)(95 147 107 135)(96 148 108 136)(97 149 109 137)(98 150 110 138)(99 141 101 139)(100 142 102 140)

G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,110,23,93)(2,109,24,92)(3,108,25,91)(4,107,26,100)(5,106,27,99)(6,105,28,98)(7,104,29,97)(8,103,30,96)(9,102,21,95)(10,101,22,94)(11,85,158,78)(12,84,159,77)(13,83,160,76)(14,82,151,75)(15,81,152,74)(16,90,153,73)(17,89,154,72)(18,88,155,71)(19,87,156,80)(20,86,157,79)(31,122,48,115)(32,121,49,114)(33,130,50,113)(34,129,41,112)(35,128,42,111)(36,127,43,120)(37,126,44,119)(38,125,45,118)(39,124,46,117)(40,123,47,116)(51,140,68,147)(52,139,69,146)(53,138,70,145)(54,137,61,144)(55,136,62,143)(56,135,63,142)(57,134,64,141)(58,133,65,150)(59,132,66,149)(60,131,67,148), (2,10)(3,9)(4,8)(5,7)(11,16)(12,15)(13,14)(17,20)(18,19)(21,25)(22,24)(26,30)(27,29)(31,47)(32,46)(33,45)(34,44)(35,43)(36,42)(37,41)(38,50)(39,49)(40,48)(51,55)(52,54)(56,60)(57,59)(61,69)(62,68)(63,67)(64,66)(71,87)(72,86)(73,85)(74,84)(75,83)(76,82)(77,81)(78,90)(79,89)(80,88)(91,102)(92,101)(93,110)(94,109)(95,108)(96,107)(97,106)(98,105)(99,104)(100,103)(111,120)(112,119)(113,118)(114,117)(115,116)(121,124)(122,123)(125,130)(126,129)(127,128)(131,142)(132,141)(133,150)(134,149)(135,148)(136,147)(137,146)(138,145)(139,144)(140,143)(151,160)(152,159)(153,158)(154,157)(155,156), (1,118,23,125)(2,119,24,126)(3,120,25,127)(4,111,26,128)(5,112,27,129)(6,113,28,130)(7,114,29,121)(8,115,30,122)(9,116,21,123)(10,117,22,124)(11,58,158,65)(12,59,159,66)(13,60,160,67)(14,51,151,68)(15,52,152,69)(16,53,153,70)(17,54,154,61)(18,55,155,62)(19,56,156,63)(20,57,157,64)(31,91,48,108)(32,92,49,109)(33,93,50,110)(34,94,41,101)(35,95,42,102)(36,96,43,103)(37,97,44,104)(38,98,45,105)(39,99,46,106)(40,100,47,107)(71,148,88,131)(72,149,89,132)(73,150,90,133)(74,141,81,134)(75,142,82,135)(76,143,83,136)(77,144,84,137)(78,145,85,138)(79,146,86,139)(80,147,87,140), (1,53,28,65)(2,54,29,66)(3,55,30,67)(4,56,21,68)(5,57,22,69)(6,58,23,70)(7,59,24,61)(8,60,25,62)(9,51,26,63)(10,52,27,64)(11,125,153,113)(12,126,154,114)(13,127,155,115)(14,128,156,116)(15,129,157,117)(16,130,158,118)(17,121,159,119)(18,122,160,120)(19,123,151,111)(20,124,152,112)(31,83,43,71)(32,84,44,72)(33,85,45,73)(34,86,46,74)(35,87,47,75)(36,88,48,76)(37,89,49,77)(38,90,50,78)(39,81,41,79)(40,82,42,80)(91,143,103,131)(92,144,104,132)(93,145,105,133)(94,146,106,134)(95,147,107,135)(96,148,108,136)(97,149,109,137)(98,150,110,138)(99,141,101,139)(100,142,102,140)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,110,23,93)(2,109,24,92)(3,108,25,91)(4,107,26,100)(5,106,27,99)(6,105,28,98)(7,104,29,97)(8,103,30,96)(9,102,21,95)(10,101,22,94)(11,85,158,78)(12,84,159,77)(13,83,160,76)(14,82,151,75)(15,81,152,74)(16,90,153,73)(17,89,154,72)(18,88,155,71)(19,87,156,80)(20,86,157,79)(31,122,48,115)(32,121,49,114)(33,130,50,113)(34,129,41,112)(35,128,42,111)(36,127,43,120)(37,126,44,119)(38,125,45,118)(39,124,46,117)(40,123,47,116)(51,140,68,147)(52,139,69,146)(53,138,70,145)(54,137,61,144)(55,136,62,143)(56,135,63,142)(57,134,64,141)(58,133,65,150)(59,132,66,149)(60,131,67,148), (2,10)(3,9)(4,8)(5,7)(11,16)(12,15)(13,14)(17,20)(18,19)(21,25)(22,24)(26,30)(27,29)(31,47)(32,46)(33,45)(34,44)(35,43)(36,42)(37,41)(38,50)(39,49)(40,48)(51,55)(52,54)(56,60)(57,59)(61,69)(62,68)(63,67)(64,66)(71,87)(72,86)(73,85)(74,84)(75,83)(76,82)(77,81)(78,90)(79,89)(80,88)(91,102)(92,101)(93,110)(94,109)(95,108)(96,107)(97,106)(98,105)(99,104)(100,103)(111,120)(112,119)(113,118)(114,117)(115,116)(121,124)(122,123)(125,130)(126,129)(127,128)(131,142)(132,141)(133,150)(134,149)(135,148)(136,147)(137,146)(138,145)(139,144)(140,143)(151,160)(152,159)(153,158)(154,157)(155,156), (1,118,23,125)(2,119,24,126)(3,120,25,127)(4,111,26,128)(5,112,27,129)(6,113,28,130)(7,114,29,121)(8,115,30,122)(9,116,21,123)(10,117,22,124)(11,58,158,65)(12,59,159,66)(13,60,160,67)(14,51,151,68)(15,52,152,69)(16,53,153,70)(17,54,154,61)(18,55,155,62)(19,56,156,63)(20,57,157,64)(31,91,48,108)(32,92,49,109)(33,93,50,110)(34,94,41,101)(35,95,42,102)(36,96,43,103)(37,97,44,104)(38,98,45,105)(39,99,46,106)(40,100,47,107)(71,148,88,131)(72,149,89,132)(73,150,90,133)(74,141,81,134)(75,142,82,135)(76,143,83,136)(77,144,84,137)(78,145,85,138)(79,146,86,139)(80,147,87,140), (1,53,28,65)(2,54,29,66)(3,55,30,67)(4,56,21,68)(5,57,22,69)(6,58,23,70)(7,59,24,61)(8,60,25,62)(9,51,26,63)(10,52,27,64)(11,125,153,113)(12,126,154,114)(13,127,155,115)(14,128,156,116)(15,129,157,117)(16,130,158,118)(17,121,159,119)(18,122,160,120)(19,123,151,111)(20,124,152,112)(31,83,43,71)(32,84,44,72)(33,85,45,73)(34,86,46,74)(35,87,47,75)(36,88,48,76)(37,89,49,77)(38,90,50,78)(39,81,41,79)(40,82,42,80)(91,143,103,131)(92,144,104,132)(93,145,105,133)(94,146,106,134)(95,147,107,135)(96,148,108,136)(97,149,109,137)(98,150,110,138)(99,141,101,139)(100,142,102,140) );

G=PermutationGroup([(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160)], [(1,110,23,93),(2,109,24,92),(3,108,25,91),(4,107,26,100),(5,106,27,99),(6,105,28,98),(7,104,29,97),(8,103,30,96),(9,102,21,95),(10,101,22,94),(11,85,158,78),(12,84,159,77),(13,83,160,76),(14,82,151,75),(15,81,152,74),(16,90,153,73),(17,89,154,72),(18,88,155,71),(19,87,156,80),(20,86,157,79),(31,122,48,115),(32,121,49,114),(33,130,50,113),(34,129,41,112),(35,128,42,111),(36,127,43,120),(37,126,44,119),(38,125,45,118),(39,124,46,117),(40,123,47,116),(51,140,68,147),(52,139,69,146),(53,138,70,145),(54,137,61,144),(55,136,62,143),(56,135,63,142),(57,134,64,141),(58,133,65,150),(59,132,66,149),(60,131,67,148)], [(2,10),(3,9),(4,8),(5,7),(11,16),(12,15),(13,14),(17,20),(18,19),(21,25),(22,24),(26,30),(27,29),(31,47),(32,46),(33,45),(34,44),(35,43),(36,42),(37,41),(38,50),(39,49),(40,48),(51,55),(52,54),(56,60),(57,59),(61,69),(62,68),(63,67),(64,66),(71,87),(72,86),(73,85),(74,84),(75,83),(76,82),(77,81),(78,90),(79,89),(80,88),(91,102),(92,101),(93,110),(94,109),(95,108),(96,107),(97,106),(98,105),(99,104),(100,103),(111,120),(112,119),(113,118),(114,117),(115,116),(121,124),(122,123),(125,130),(126,129),(127,128),(131,142),(132,141),(133,150),(134,149),(135,148),(136,147),(137,146),(138,145),(139,144),(140,143),(151,160),(152,159),(153,158),(154,157),(155,156)], [(1,118,23,125),(2,119,24,126),(3,120,25,127),(4,111,26,128),(5,112,27,129),(6,113,28,130),(7,114,29,121),(8,115,30,122),(9,116,21,123),(10,117,22,124),(11,58,158,65),(12,59,159,66),(13,60,160,67),(14,51,151,68),(15,52,152,69),(16,53,153,70),(17,54,154,61),(18,55,155,62),(19,56,156,63),(20,57,157,64),(31,91,48,108),(32,92,49,109),(33,93,50,110),(34,94,41,101),(35,95,42,102),(36,96,43,103),(37,97,44,104),(38,98,45,105),(39,99,46,106),(40,100,47,107),(71,148,88,131),(72,149,89,132),(73,150,90,133),(74,141,81,134),(75,142,82,135),(76,143,83,136),(77,144,84,137),(78,145,85,138),(79,146,86,139),(80,147,87,140)], [(1,53,28,65),(2,54,29,66),(3,55,30,67),(4,56,21,68),(5,57,22,69),(6,58,23,70),(7,59,24,61),(8,60,25,62),(9,51,26,63),(10,52,27,64),(11,125,153,113),(12,126,154,114),(13,127,155,115),(14,128,156,116),(15,129,157,117),(16,130,158,118),(17,121,159,119),(18,122,160,120),(19,123,151,111),(20,124,152,112),(31,83,43,71),(32,84,44,72),(33,85,45,73),(34,86,46,74),(35,87,47,75),(36,88,48,76),(37,89,49,77),(38,90,50,78),(39,81,41,79),(40,82,42,80),(91,143,103,131),(92,144,104,132),(93,145,105,133),(94,146,106,134),(95,147,107,135),(96,148,108,136),(97,149,109,137),(98,150,110,138),(99,141,101,139),(100,142,102,140)])

62 conjugacy classes

class 1 2A2B2C2D2E2F2G4A4B4C4D4E4F4G4H4I···4N5A5B10A···10N20A···20X
order12222222444444444···45510···1020···20
size11112220202222444420···20222···24···4

62 irreducible representations

dim1111111111222224444
type++++++++++++++-
imageC1C2C2C2C2C2C2C2C2C2D5C4○D4D10D10C4○D202+ 1+42- 1+4D46D10Q8.10D10
kernelC10.62- 1+4Dic5.Q8D10.13D4D10⋊Q8C4⋊C4⋊D5C20.48D4C4×C5⋊D4C23.23D10C207D4C10×C4⋊C4C2×C4⋊C4C2×C10C4⋊C4C22×C4C22C10C10C2C2
# reps12222122112486161144

Matrix representation of C10.62- 1+4 in GL6(𝔽41)

4000000
0400000
001600
0035600
000016
0000356
,
100000
40400000
00212100
00182000
00002121
00001820
,
100000
40400000
0063500
00403500
0000635
00004035
,
120000
0400000
0000186
00003523
00233500
0061800
,
3200000
0320000
00130180
00013018
00180280
00018028

G:=sub<GL(6,GF(41))| [40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,35,0,0,0,0,6,6,0,0,0,0,0,0,1,35,0,0,0,0,6,6],[1,40,0,0,0,0,0,40,0,0,0,0,0,0,21,18,0,0,0,0,21,20,0,0,0,0,0,0,21,18,0,0,0,0,21,20],[1,40,0,0,0,0,0,40,0,0,0,0,0,0,6,40,0,0,0,0,35,35,0,0,0,0,0,0,6,40,0,0,0,0,35,35],[1,0,0,0,0,0,2,40,0,0,0,0,0,0,0,0,23,6,0,0,0,0,35,18,0,0,18,35,0,0,0,0,6,23,0,0],[32,0,0,0,0,0,0,32,0,0,0,0,0,0,13,0,18,0,0,0,0,13,0,18,0,0,18,0,28,0,0,0,0,18,0,28] >;

C10.62- 1+4 in GAP, Magma, Sage, TeX

C_{10}._62_-^{1+4}
% in TeX

G:=Group("C10.6ES-(2,2)");
// GroupNames label

G:=SmallGroup(320,1187);
// by ID

G=gap.SmallGroup(320,1187);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,477,100,675,297,136,12550]);
// Polycyclic

G:=Group<a,b,c,d,e|a^10=b^4=c^2=1,d^2=b^2,e^2=a^5*b^2,b*a*b^-1=c*a*c=a^-1,a*d=d*a,a*e=e*a,c*b*c=b^-1,d*b*d^-1=a^5*b,b*e=e*b,d*c*d^-1=a^5*c,c*e=e*c,e*d*e^-1=b^2*d>;
// generators/relations

׿
×
𝔽