Extensions 1→N→G→Q→1 with N=C2×D4⋊D5 and Q=C2

Direct product G=N×Q with N=C2×D4⋊D5 and Q=C2
dρLabelID
C22×D4⋊D5160C2^2xD4:D5320,1464

Semidirect products G=N:Q with N=C2×D4⋊D5 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×D4⋊D5)⋊1C2 = D20.3D4φ: C2/C1C2 ⊆ Out C2×D4⋊D5808+(C2xD4:D5):1C2320,376
(C2×D4⋊D5)⋊2C2 = D4⋊D20φ: C2/C1C2 ⊆ Out C2×D4⋊D580(C2xD4:D5):2C2320,400
(C2×D4⋊D5)⋊3C2 = D10⋊D8φ: C2/C1C2 ⊆ Out C2×D4⋊D5160(C2xD4:D5):3C2320,402
(C2×D4⋊D5)⋊4C2 = D43D20φ: C2/C1C2 ⊆ Out C2×D4⋊D5160(C2xD4:D5):4C2320,408
(C2×D4⋊D5)⋊5C2 = C5⋊(C82D4)φ: C2/C1C2 ⊆ Out C2×D4⋊D5160(C2xD4:D5):5C2320,409
(C2×D4⋊D5)⋊6C2 = D203D4φ: C2/C1C2 ⊆ Out C2×D4⋊D5160(C2xD4:D5):6C2320,413
(C2×D4⋊D5)⋊7C2 = C207D8φ: C2/C1C2 ⊆ Out C2×D4⋊D5160(C2xD4:D5):7C2320,642
(C2×D4⋊D5)⋊8C2 = D2016D4φ: C2/C1C2 ⊆ Out C2×D4⋊D580(C2xD4:D5):8C2320,663
(C2×D4⋊D5)⋊9C2 = D2017D4φ: C2/C1C2 ⊆ Out C2×D4⋊D5160(C2xD4:D5):9C2320,664
(C2×D4⋊D5)⋊10C2 = (C2×C10)⋊D8φ: C2/C1C2 ⊆ Out C2×D4⋊D5160(C2xD4:D5):10C2320,665
(C2×D4⋊D5)⋊11C2 = C4⋊D4⋊D5φ: C2/C1C2 ⊆ Out C2×D4⋊D5160(C2xD4:D5):11C2320,666
(C2×D4⋊D5)⋊12C2 = C42.64D10φ: C2/C1C2 ⊆ Out C2×D4⋊D5160(C2xD4:D5):12C2320,685
(C2×D4⋊D5)⋊13C2 = C202D8φ: C2/C1C2 ⊆ Out C2×D4⋊D5160(C2xD4:D5):13C2320,699
(C2×D4⋊D5)⋊14C2 = C20⋊D8φ: C2/C1C2 ⊆ Out C2×D4⋊D5160(C2xD4:D5):14C2320,700
(C2×D4⋊D5)⋊15C2 = C42.74D10φ: C2/C1C2 ⊆ Out C2×D4⋊D5160(C2xD4:D5):15C2320,701
(C2×D4⋊D5)⋊16C2 = Dic5⋊D8φ: C2/C1C2 ⊆ Out C2×D4⋊D5160(C2xD4:D5):16C2320,777
(C2×D4⋊D5)⋊17C2 = C405D4φ: C2/C1C2 ⊆ Out C2×D4⋊D5160(C2xD4:D5):17C2320,778
(C2×D4⋊D5)⋊18C2 = C4011D4φ: C2/C1C2 ⊆ Out C2×D4⋊D5160(C2xD4:D5):18C2320,781
(C2×D4⋊D5)⋊19C2 = D20⋊D4φ: C2/C1C2 ⊆ Out C2×D4⋊D580(C2xD4:D5):19C2320,783
(C2×D4⋊D5)⋊20C2 = D207D4φ: C2/C1C2 ⊆ Out C2×D4⋊D5160(C2xD4:D5):20C2320,799
(C2×D4⋊D5)⋊21C2 = C409D4φ: C2/C1C2 ⊆ Out C2×D4⋊D5160(C2xD4:D5):21C2320,803
(C2×D4⋊D5)⋊22C2 = M4(2).D10φ: C2/C1C2 ⊆ Out C2×D4⋊D5808+(C2xD4:D5):22C2320,826
(C2×D4⋊D5)⋊23C2 = (C2×C10)⋊8D8φ: C2/C1C2 ⊆ Out C2×D4⋊D580(C2xD4:D5):23C2320,844
(C2×D4⋊D5)⋊24C2 = (C5×D4)⋊14D4φ: C2/C1C2 ⊆ Out C2×D4⋊D5160(C2xD4:D5):24C2320,865
(C2×D4⋊D5)⋊25C2 = C2×D5×D8φ: C2/C1C2 ⊆ Out C2×D4⋊D580(C2xD4:D5):25C2320,1426
(C2×D4⋊D5)⋊26C2 = C2×D8⋊D5φ: C2/C1C2 ⊆ Out C2×D4⋊D580(C2xD4:D5):26C2320,1427
(C2×D4⋊D5)⋊27C2 = C2×D40⋊C2φ: C2/C1C2 ⊆ Out C2×D4⋊D580(C2xD4:D5):27C2320,1431
(C2×D4⋊D5)⋊28C2 = C2×SD163D5φ: C2/C1C2 ⊆ Out C2×D4⋊D5160(C2xD4:D5):28C2320,1433
(C2×D4⋊D5)⋊29C2 = D85D10φ: C2/C1C2 ⊆ Out C2×D4⋊D5808+(C2xD4:D5):29C2320,1446
(C2×D4⋊D5)⋊30C2 = C2×D4.D10φ: C2/C1C2 ⊆ Out C2×D4⋊D580(C2xD4:D5):30C2320,1465
(C2×D4⋊D5)⋊31C2 = C2×D4⋊D10φ: C2/C1C2 ⊆ Out C2×D4⋊D580(C2xD4:D5):31C2320,1492
(C2×D4⋊D5)⋊32C2 = D20.32C23φ: C2/C1C2 ⊆ Out C2×D4⋊D5808+(C2xD4:D5):32C2320,1507
(C2×D4⋊D5)⋊33C2 = C2×D4.8D10φ: trivial image160(C2xD4:D5):33C2320,1493

Non-split extensions G=N.Q with N=C2×D4⋊D5 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×D4⋊D5).1C2 = Dic54D8φ: C2/C1C2 ⊆ Out C2×D4⋊D5160(C2xD4:D5).1C2320,383
(C2×D4⋊D5).2C2 = D4⋊D56C4φ: C2/C1C2 ⊆ Out C2×D4⋊D5160(C2xD4:D5).2C2320,412
(C2×D4⋊D5).3C2 = D20.D4φ: C2/C1C2 ⊆ Out C2×D4⋊D5160(C2xD4:D5).3C2320,414
(C2×D4⋊D5).4C2 = C42.48D10φ: C2/C1C2 ⊆ Out C2×D4⋊D5160(C2xD4:D5).4C2320,641
(C2×D4⋊D5).5C2 = D4.1D20φ: C2/C1C2 ⊆ Out C2×D4⋊D5160(C2xD4:D5).5C2320,643
(C2×D4⋊D5).6C2 = D20.23D4φ: C2/C1C2 ⊆ Out C2×D4⋊D5160(C2xD4:D5).6C2320,684
(C2×D4⋊D5).7C2 = C42.214D10φ: C2/C1C2 ⊆ Out C2×D4⋊D5160(C2xD4:D5).7C2320,686
(C2×D4⋊D5).8C2 = (C5×D4).D4φ: C2/C1C2 ⊆ Out C2×D4⋊D5160(C2xD4:D5).8C2320,792
(C2×D4⋊D5).9C2 = C40.43D4φ: C2/C1C2 ⊆ Out C2×D4⋊D5160(C2xD4:D5).9C2320,795
(C2×D4⋊D5).10C2 = C4×D4⋊D5φ: trivial image160(C2xD4:D5).10C2320,640

׿
×
𝔽