Copied to
clipboard

G = Dic5⋊D8order 320 = 26·5

2nd semidirect product of Dic5 and D8 acting via D8/D4=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: Dic53D8, (C2×D8)⋊2D5, (C5×D4)⋊4D4, C55(C4⋊D8), C2.26(D5×D8), (C10×D8)⋊12C2, C20⋊D43C2, D41(C5⋊D4), (D4×Dic5)⋊4C2, (C2×C8).33D10, C10.43(C2×D8), C20.162(C2×D4), D205C428C2, (C2×D4).140D10, C20.90(C4○D4), D4⋊Dic525C2, C4.7(D42D5), C20.8Q827C2, C22.251(D4×D5), C2.26(D8⋊D5), C10.46(C8⋊C22), (C2×C40).247C22, (C2×C20).427C23, (C2×Dic5).235D4, (D4×C10).77C22, C10.107(C4⋊D4), (C2×D20).117C22, C4⋊Dic5.162C22, (C4×Dic5).48C22, C2.22(Dic5⋊D4), (C2×D4⋊D5)⋊16C2, C4.34(C2×C5⋊D4), (C2×C10).340(C2×D4), (C2×C4).517(C22×D5), (C2×C52C8).145C22, SmallGroup(320,777)

Series: Derived Chief Lower central Upper central

C1C2×C20 — Dic5⋊D8
C1C5C10C20C2×C20C4×Dic5D4×Dic5 — Dic5⋊D8
C5C10C2×C20 — Dic5⋊D8
C1C22C2×C4C2×D8

Generators and relations for Dic5⋊D8
 G = < a,b,c,d | a10=c8=d2=1, b2=a5, bab-1=a-1, ac=ca, ad=da, cbc-1=a5b, bd=db, dcd=c-1 >

Subgroups: 662 in 140 conjugacy classes, 43 normal (37 characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C8, C2×C4, C2×C4, D4, D4, C23, D5, C10, C10, C42, C22⋊C4, C4⋊C4, C2×C8, C2×C8, D8, C22×C4, C2×D4, C2×D4, Dic5, Dic5, C20, D10, C2×C10, C2×C10, D4⋊C4, C4⋊C8, C4×D4, C41D4, C2×D8, C2×D8, C52C8, C40, D20, C2×Dic5, C2×Dic5, C5⋊D4, C2×C20, C5×D4, C5×D4, C22×D5, C22×C10, C4⋊D8, C2×C52C8, C4×Dic5, C4⋊Dic5, D4⋊D5, C23.D5, C2×C40, C5×D8, C2×D20, C22×Dic5, C2×C5⋊D4, D4×C10, C20.8Q8, D205C4, D4⋊Dic5, C2×D4⋊D5, D4×Dic5, C20⋊D4, C10×D8, Dic5⋊D8
Quotients: C1, C2, C22, D4, C23, D5, D8, C2×D4, C4○D4, D10, C4⋊D4, C2×D8, C8⋊C22, C5⋊D4, C22×D5, C4⋊D8, D4×D5, D42D5, C2×C5⋊D4, D5×D8, D8⋊D5, Dic5⋊D4, Dic5⋊D8

Smallest permutation representation of Dic5⋊D8
On 160 points
Generators in S160
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160)
(1 60 6 55)(2 59 7 54)(3 58 8 53)(4 57 9 52)(5 56 10 51)(11 118 16 113)(12 117 17 112)(13 116 18 111)(14 115 19 120)(15 114 20 119)(21 65 26 70)(22 64 27 69)(23 63 28 68)(24 62 29 67)(25 61 30 66)(31 87 36 82)(32 86 37 81)(33 85 38 90)(34 84 39 89)(35 83 40 88)(41 77 46 72)(42 76 47 71)(43 75 48 80)(44 74 49 79)(45 73 50 78)(91 139 96 134)(92 138 97 133)(93 137 98 132)(94 136 99 131)(95 135 100 140)(101 145 106 150)(102 144 107 149)(103 143 108 148)(104 142 109 147)(105 141 110 146)(121 157 126 152)(122 156 127 151)(123 155 128 160)(124 154 129 159)(125 153 130 158)
(1 160 40 148 28 14 48 140)(2 151 31 149 29 15 49 131)(3 152 32 150 30 16 50 132)(4 153 33 141 21 17 41 133)(5 154 34 142 22 18 42 134)(6 155 35 143 23 19 43 135)(7 156 36 144 24 20 44 136)(8 157 37 145 25 11 45 137)(9 158 38 146 26 12 46 138)(10 159 39 147 27 13 47 139)(51 129 89 109 69 111 71 91)(52 130 90 110 70 112 72 92)(53 121 81 101 61 113 73 93)(54 122 82 102 62 114 74 94)(55 123 83 103 63 115 75 95)(56 124 84 104 64 116 76 96)(57 125 85 105 65 117 77 97)(58 126 86 106 66 118 78 98)(59 127 87 107 67 119 79 99)(60 128 88 108 68 120 80 100)
(1 100)(2 91)(3 92)(4 93)(5 94)(6 95)(7 96)(8 97)(9 98)(10 99)(11 85)(12 86)(13 87)(14 88)(15 89)(16 90)(17 81)(18 82)(19 83)(20 84)(21 101)(22 102)(23 103)(24 104)(25 105)(26 106)(27 107)(28 108)(29 109)(30 110)(31 111)(32 112)(33 113)(34 114)(35 115)(36 116)(37 117)(38 118)(39 119)(40 120)(41 121)(42 122)(43 123)(44 124)(45 125)(46 126)(47 127)(48 128)(49 129)(50 130)(51 131)(52 132)(53 133)(54 134)(55 135)(56 136)(57 137)(58 138)(59 139)(60 140)(61 141)(62 142)(63 143)(64 144)(65 145)(66 146)(67 147)(68 148)(69 149)(70 150)(71 151)(72 152)(73 153)(74 154)(75 155)(76 156)(77 157)(78 158)(79 159)(80 160)

G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,60,6,55)(2,59,7,54)(3,58,8,53)(4,57,9,52)(5,56,10,51)(11,118,16,113)(12,117,17,112)(13,116,18,111)(14,115,19,120)(15,114,20,119)(21,65,26,70)(22,64,27,69)(23,63,28,68)(24,62,29,67)(25,61,30,66)(31,87,36,82)(32,86,37,81)(33,85,38,90)(34,84,39,89)(35,83,40,88)(41,77,46,72)(42,76,47,71)(43,75,48,80)(44,74,49,79)(45,73,50,78)(91,139,96,134)(92,138,97,133)(93,137,98,132)(94,136,99,131)(95,135,100,140)(101,145,106,150)(102,144,107,149)(103,143,108,148)(104,142,109,147)(105,141,110,146)(121,157,126,152)(122,156,127,151)(123,155,128,160)(124,154,129,159)(125,153,130,158), (1,160,40,148,28,14,48,140)(2,151,31,149,29,15,49,131)(3,152,32,150,30,16,50,132)(4,153,33,141,21,17,41,133)(5,154,34,142,22,18,42,134)(6,155,35,143,23,19,43,135)(7,156,36,144,24,20,44,136)(8,157,37,145,25,11,45,137)(9,158,38,146,26,12,46,138)(10,159,39,147,27,13,47,139)(51,129,89,109,69,111,71,91)(52,130,90,110,70,112,72,92)(53,121,81,101,61,113,73,93)(54,122,82,102,62,114,74,94)(55,123,83,103,63,115,75,95)(56,124,84,104,64,116,76,96)(57,125,85,105,65,117,77,97)(58,126,86,106,66,118,78,98)(59,127,87,107,67,119,79,99)(60,128,88,108,68,120,80,100), (1,100)(2,91)(3,92)(4,93)(5,94)(6,95)(7,96)(8,97)(9,98)(10,99)(11,85)(12,86)(13,87)(14,88)(15,89)(16,90)(17,81)(18,82)(19,83)(20,84)(21,101)(22,102)(23,103)(24,104)(25,105)(26,106)(27,107)(28,108)(29,109)(30,110)(31,111)(32,112)(33,113)(34,114)(35,115)(36,116)(37,117)(38,118)(39,119)(40,120)(41,121)(42,122)(43,123)(44,124)(45,125)(46,126)(47,127)(48,128)(49,129)(50,130)(51,131)(52,132)(53,133)(54,134)(55,135)(56,136)(57,137)(58,138)(59,139)(60,140)(61,141)(62,142)(63,143)(64,144)(65,145)(66,146)(67,147)(68,148)(69,149)(70,150)(71,151)(72,152)(73,153)(74,154)(75,155)(76,156)(77,157)(78,158)(79,159)(80,160)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,60,6,55)(2,59,7,54)(3,58,8,53)(4,57,9,52)(5,56,10,51)(11,118,16,113)(12,117,17,112)(13,116,18,111)(14,115,19,120)(15,114,20,119)(21,65,26,70)(22,64,27,69)(23,63,28,68)(24,62,29,67)(25,61,30,66)(31,87,36,82)(32,86,37,81)(33,85,38,90)(34,84,39,89)(35,83,40,88)(41,77,46,72)(42,76,47,71)(43,75,48,80)(44,74,49,79)(45,73,50,78)(91,139,96,134)(92,138,97,133)(93,137,98,132)(94,136,99,131)(95,135,100,140)(101,145,106,150)(102,144,107,149)(103,143,108,148)(104,142,109,147)(105,141,110,146)(121,157,126,152)(122,156,127,151)(123,155,128,160)(124,154,129,159)(125,153,130,158), (1,160,40,148,28,14,48,140)(2,151,31,149,29,15,49,131)(3,152,32,150,30,16,50,132)(4,153,33,141,21,17,41,133)(5,154,34,142,22,18,42,134)(6,155,35,143,23,19,43,135)(7,156,36,144,24,20,44,136)(8,157,37,145,25,11,45,137)(9,158,38,146,26,12,46,138)(10,159,39,147,27,13,47,139)(51,129,89,109,69,111,71,91)(52,130,90,110,70,112,72,92)(53,121,81,101,61,113,73,93)(54,122,82,102,62,114,74,94)(55,123,83,103,63,115,75,95)(56,124,84,104,64,116,76,96)(57,125,85,105,65,117,77,97)(58,126,86,106,66,118,78,98)(59,127,87,107,67,119,79,99)(60,128,88,108,68,120,80,100), (1,100)(2,91)(3,92)(4,93)(5,94)(6,95)(7,96)(8,97)(9,98)(10,99)(11,85)(12,86)(13,87)(14,88)(15,89)(16,90)(17,81)(18,82)(19,83)(20,84)(21,101)(22,102)(23,103)(24,104)(25,105)(26,106)(27,107)(28,108)(29,109)(30,110)(31,111)(32,112)(33,113)(34,114)(35,115)(36,116)(37,117)(38,118)(39,119)(40,120)(41,121)(42,122)(43,123)(44,124)(45,125)(46,126)(47,127)(48,128)(49,129)(50,130)(51,131)(52,132)(53,133)(54,134)(55,135)(56,136)(57,137)(58,138)(59,139)(60,140)(61,141)(62,142)(63,143)(64,144)(65,145)(66,146)(67,147)(68,148)(69,149)(70,150)(71,151)(72,152)(73,153)(74,154)(75,155)(76,156)(77,157)(78,158)(79,159)(80,160) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160)], [(1,60,6,55),(2,59,7,54),(3,58,8,53),(4,57,9,52),(5,56,10,51),(11,118,16,113),(12,117,17,112),(13,116,18,111),(14,115,19,120),(15,114,20,119),(21,65,26,70),(22,64,27,69),(23,63,28,68),(24,62,29,67),(25,61,30,66),(31,87,36,82),(32,86,37,81),(33,85,38,90),(34,84,39,89),(35,83,40,88),(41,77,46,72),(42,76,47,71),(43,75,48,80),(44,74,49,79),(45,73,50,78),(91,139,96,134),(92,138,97,133),(93,137,98,132),(94,136,99,131),(95,135,100,140),(101,145,106,150),(102,144,107,149),(103,143,108,148),(104,142,109,147),(105,141,110,146),(121,157,126,152),(122,156,127,151),(123,155,128,160),(124,154,129,159),(125,153,130,158)], [(1,160,40,148,28,14,48,140),(2,151,31,149,29,15,49,131),(3,152,32,150,30,16,50,132),(4,153,33,141,21,17,41,133),(5,154,34,142,22,18,42,134),(6,155,35,143,23,19,43,135),(7,156,36,144,24,20,44,136),(8,157,37,145,25,11,45,137),(9,158,38,146,26,12,46,138),(10,159,39,147,27,13,47,139),(51,129,89,109,69,111,71,91),(52,130,90,110,70,112,72,92),(53,121,81,101,61,113,73,93),(54,122,82,102,62,114,74,94),(55,123,83,103,63,115,75,95),(56,124,84,104,64,116,76,96),(57,125,85,105,65,117,77,97),(58,126,86,106,66,118,78,98),(59,127,87,107,67,119,79,99),(60,128,88,108,68,120,80,100)], [(1,100),(2,91),(3,92),(4,93),(5,94),(6,95),(7,96),(8,97),(9,98),(10,99),(11,85),(12,86),(13,87),(14,88),(15,89),(16,90),(17,81),(18,82),(19,83),(20,84),(21,101),(22,102),(23,103),(24,104),(25,105),(26,106),(27,107),(28,108),(29,109),(30,110),(31,111),(32,112),(33,113),(34,114),(35,115),(36,116),(37,117),(38,118),(39,119),(40,120),(41,121),(42,122),(43,123),(44,124),(45,125),(46,126),(47,127),(48,128),(49,129),(50,130),(51,131),(52,132),(53,133),(54,134),(55,135),(56,136),(57,137),(58,138),(59,139),(60,140),(61,141),(62,142),(63,143),(64,144),(65,145),(66,146),(67,147),(68,148),(69,149),(70,150),(71,151),(72,152),(73,153),(74,154),(75,155),(76,156),(77,157),(78,158),(79,159),(80,160)]])

47 conjugacy classes

class 1 2A2B2C2D2E2F2G4A4B4C4D4E4F4G5A5B8A8B8C8D10A···10F10G···10N20A20B20C20D40A···40H
order12222222444444455888810···1010···102020202040···40
size111144840221010202020224420202···28···844444···4

47 irreducible representations

dim111111112222222244444
type+++++++++++++++-++
imageC1C2C2C2C2C2C2C2D4D4D5D8C4○D4D10D10C5⋊D4C8⋊C22D42D5D4×D5D5×D8D8⋊D5
kernelDic5⋊D8C20.8Q8D205C4D4⋊Dic5C2×D4⋊D5D4×Dic5C20⋊D4C10×D8C2×Dic5C5×D4C2×D8Dic5C20C2×C8C2×D4D4C10C4C22C2C2
# reps111111112224224812244

Matrix representation of Dic5⋊D8 in GL6(𝔽41)

4000000
0400000
007100
00334000
000010
000001
,
1540000
5260000
00343500
008700
000010
000001
,
26370000
15150000
001000
000100
0000622
0000318
,
100000
010000
001000
000100
0000622
0000435

G:=sub<GL(6,GF(41))| [40,0,0,0,0,0,0,40,0,0,0,0,0,0,7,33,0,0,0,0,1,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[15,5,0,0,0,0,4,26,0,0,0,0,0,0,34,8,0,0,0,0,35,7,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[26,15,0,0,0,0,37,15,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,6,3,0,0,0,0,22,18],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,6,4,0,0,0,0,22,35] >;

Dic5⋊D8 in GAP, Magma, Sage, TeX

{\rm Dic}_5\rtimes D_8
% in TeX

G:=Group("Dic5:D8");
// GroupNames label

G:=SmallGroup(320,777);
// by ID

G=gap.SmallGroup(320,777);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,112,422,135,570,297,136,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^10=c^8=d^2=1,b^2=a^5,b*a*b^-1=a^-1,a*c=c*a,a*d=d*a,c*b*c^-1=a^5*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽