metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: D20⋊17D4, Dic10⋊16D4, C4⋊D4⋊2D5, C4.99(D4×D5), C5⋊4(D4⋊D4), C4⋊C4.57D10, (C2×D4).37D10, C20.146(C2×D4), (C2×C20).262D4, D20⋊6C4⋊34C2, C10.45C22≀C2, C10.96(C4○D8), C10.Q16⋊33C2, (C22×C10).83D4, C20.55D4⋊11C2, C10.90(C8⋊C22), (C2×C20).356C23, (D4×C10).53C22, (C22×C4).120D10, C23.23(C5⋊D4), C2.13(C23⋊D10), (C2×D20).249C22, C2.15(D4.8D10), C2.11(D4.D10), (C22×C20).160C22, (C2×Dic10).276C22, (C2×D4⋊D5)⋊9C2, (C5×C4⋊D4)⋊2C2, (C2×D4.D5)⋊8C2, (C2×C4○D20)⋊15C2, (C2×C10).487(C2×D4), (C2×C4).171(C5⋊D4), (C5×C4⋊C4).104C22, (C2×C4).456(C22×D5), C22.162(C2×C5⋊D4), (C2×C5⋊2C8).108C22, SmallGroup(320,664)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C22 — C22×C4 — C4⋊D4 |
Generators and relations for D20⋊17D4
G = < a,b,c,d | a20=b2=c4=d2=1, bab=a-1, cac-1=a11, ad=da, cbc-1=a5b, dbd=a10b, dcd=c-1 >
Subgroups: 670 in 162 conjugacy classes, 43 normal (39 characteristic)
C1, C2 [×3], C2 [×4], C4 [×2], C4 [×4], C22, C22 [×10], C5, C8 [×2], C2×C4 [×2], C2×C4 [×8], D4 [×11], Q8 [×3], C23, C23 [×2], D5 [×2], C10 [×3], C10 [×2], C22⋊C4, C4⋊C4, C2×C8 [×2], D8 [×2], SD16 [×2], C22×C4, C22×C4, C2×D4, C2×D4 [×3], C2×Q8, C4○D4 [×4], Dic5 [×2], C20 [×2], C20 [×2], D10 [×4], C2×C10, C2×C10 [×6], C22⋊C8, D4⋊C4, Q8⋊C4, C4⋊D4, C2×D8, C2×SD16, C2×C4○D4, C5⋊2C8 [×2], Dic10 [×2], Dic10, C4×D5 [×4], D20 [×2], D20, C2×Dic5, C5⋊D4 [×4], C2×C20 [×2], C2×C20 [×3], C5×D4 [×4], C22×D5, C22×C10, C22×C10, D4⋊D4, C2×C5⋊2C8 [×2], D4⋊D5 [×2], D4.D5 [×2], C5×C22⋊C4, C5×C4⋊C4, C2×Dic10, C2×C4×D5, C2×D20, C4○D20 [×4], C2×C5⋊D4, C22×C20, D4×C10, D4×C10, D20⋊6C4, C10.Q16, C20.55D4, C2×D4⋊D5, C2×D4.D5, C5×C4⋊D4, C2×C4○D20, D20⋊17D4
Quotients: C1, C2 [×7], C22 [×7], D4 [×6], C23, D5, C2×D4 [×3], D10 [×3], C22≀C2, C4○D8, C8⋊C22, C5⋊D4 [×2], C22×D5, D4⋊D4, D4×D5 [×2], C2×C5⋊D4, D4.D10, C23⋊D10, D4.8D10, D20⋊17D4
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 20)(2 19)(3 18)(4 17)(5 16)(6 15)(7 14)(8 13)(9 12)(10 11)(21 28)(22 27)(23 26)(24 25)(29 40)(30 39)(31 38)(32 37)(33 36)(34 35)(41 47)(42 46)(43 45)(48 60)(49 59)(50 58)(51 57)(52 56)(53 55)(61 72)(62 71)(63 70)(64 69)(65 68)(66 67)(73 80)(74 79)(75 78)(76 77)(81 87)(82 86)(83 85)(88 100)(89 99)(90 98)(91 97)(92 96)(93 95)(101 102)(103 120)(104 119)(105 118)(106 117)(107 116)(108 115)(109 114)(110 113)(111 112)(121 131)(122 130)(123 129)(124 128)(125 127)(132 140)(133 139)(134 138)(135 137)(141 157)(142 156)(143 155)(144 154)(145 153)(146 152)(147 151)(148 150)(158 160)
(1 139 67 142)(2 130 68 153)(3 121 69 144)(4 132 70 155)(5 123 71 146)(6 134 72 157)(7 125 73 148)(8 136 74 159)(9 127 75 150)(10 138 76 141)(11 129 77 152)(12 140 78 143)(13 131 79 154)(14 122 80 145)(15 133 61 156)(16 124 62 147)(17 135 63 158)(18 126 64 149)(19 137 65 160)(20 128 66 151)(21 53 108 93)(22 44 109 84)(23 55 110 95)(24 46 111 86)(25 57 112 97)(26 48 113 88)(27 59 114 99)(28 50 115 90)(29 41 116 81)(30 52 117 92)(31 43 118 83)(32 54 119 94)(33 45 120 85)(34 56 101 96)(35 47 102 87)(36 58 103 98)(37 49 104 89)(38 60 105 100)(39 51 106 91)(40 42 107 82)
(1 40)(2 21)(3 22)(4 23)(5 24)(6 25)(7 26)(8 27)(9 28)(10 29)(11 30)(12 31)(13 32)(14 33)(15 34)(16 35)(17 36)(18 37)(19 38)(20 39)(41 141)(42 142)(43 143)(44 144)(45 145)(46 146)(47 147)(48 148)(49 149)(50 150)(51 151)(52 152)(53 153)(54 154)(55 155)(56 156)(57 157)(58 158)(59 159)(60 160)(61 101)(62 102)(63 103)(64 104)(65 105)(66 106)(67 107)(68 108)(69 109)(70 110)(71 111)(72 112)(73 113)(74 114)(75 115)(76 116)(77 117)(78 118)(79 119)(80 120)(81 138)(82 139)(83 140)(84 121)(85 122)(86 123)(87 124)(88 125)(89 126)(90 127)(91 128)(92 129)(93 130)(94 131)(95 132)(96 133)(97 134)(98 135)(99 136)(100 137)
G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,20)(2,19)(3,18)(4,17)(5,16)(6,15)(7,14)(8,13)(9,12)(10,11)(21,28)(22,27)(23,26)(24,25)(29,40)(30,39)(31,38)(32,37)(33,36)(34,35)(41,47)(42,46)(43,45)(48,60)(49,59)(50,58)(51,57)(52,56)(53,55)(61,72)(62,71)(63,70)(64,69)(65,68)(66,67)(73,80)(74,79)(75,78)(76,77)(81,87)(82,86)(83,85)(88,100)(89,99)(90,98)(91,97)(92,96)(93,95)(101,102)(103,120)(104,119)(105,118)(106,117)(107,116)(108,115)(109,114)(110,113)(111,112)(121,131)(122,130)(123,129)(124,128)(125,127)(132,140)(133,139)(134,138)(135,137)(141,157)(142,156)(143,155)(144,154)(145,153)(146,152)(147,151)(148,150)(158,160), (1,139,67,142)(2,130,68,153)(3,121,69,144)(4,132,70,155)(5,123,71,146)(6,134,72,157)(7,125,73,148)(8,136,74,159)(9,127,75,150)(10,138,76,141)(11,129,77,152)(12,140,78,143)(13,131,79,154)(14,122,80,145)(15,133,61,156)(16,124,62,147)(17,135,63,158)(18,126,64,149)(19,137,65,160)(20,128,66,151)(21,53,108,93)(22,44,109,84)(23,55,110,95)(24,46,111,86)(25,57,112,97)(26,48,113,88)(27,59,114,99)(28,50,115,90)(29,41,116,81)(30,52,117,92)(31,43,118,83)(32,54,119,94)(33,45,120,85)(34,56,101,96)(35,47,102,87)(36,58,103,98)(37,49,104,89)(38,60,105,100)(39,51,106,91)(40,42,107,82), (1,40)(2,21)(3,22)(4,23)(5,24)(6,25)(7,26)(8,27)(9,28)(10,29)(11,30)(12,31)(13,32)(14,33)(15,34)(16,35)(17,36)(18,37)(19,38)(20,39)(41,141)(42,142)(43,143)(44,144)(45,145)(46,146)(47,147)(48,148)(49,149)(50,150)(51,151)(52,152)(53,153)(54,154)(55,155)(56,156)(57,157)(58,158)(59,159)(60,160)(61,101)(62,102)(63,103)(64,104)(65,105)(66,106)(67,107)(68,108)(69,109)(70,110)(71,111)(72,112)(73,113)(74,114)(75,115)(76,116)(77,117)(78,118)(79,119)(80,120)(81,138)(82,139)(83,140)(84,121)(85,122)(86,123)(87,124)(88,125)(89,126)(90,127)(91,128)(92,129)(93,130)(94,131)(95,132)(96,133)(97,134)(98,135)(99,136)(100,137)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,20)(2,19)(3,18)(4,17)(5,16)(6,15)(7,14)(8,13)(9,12)(10,11)(21,28)(22,27)(23,26)(24,25)(29,40)(30,39)(31,38)(32,37)(33,36)(34,35)(41,47)(42,46)(43,45)(48,60)(49,59)(50,58)(51,57)(52,56)(53,55)(61,72)(62,71)(63,70)(64,69)(65,68)(66,67)(73,80)(74,79)(75,78)(76,77)(81,87)(82,86)(83,85)(88,100)(89,99)(90,98)(91,97)(92,96)(93,95)(101,102)(103,120)(104,119)(105,118)(106,117)(107,116)(108,115)(109,114)(110,113)(111,112)(121,131)(122,130)(123,129)(124,128)(125,127)(132,140)(133,139)(134,138)(135,137)(141,157)(142,156)(143,155)(144,154)(145,153)(146,152)(147,151)(148,150)(158,160), (1,139,67,142)(2,130,68,153)(3,121,69,144)(4,132,70,155)(5,123,71,146)(6,134,72,157)(7,125,73,148)(8,136,74,159)(9,127,75,150)(10,138,76,141)(11,129,77,152)(12,140,78,143)(13,131,79,154)(14,122,80,145)(15,133,61,156)(16,124,62,147)(17,135,63,158)(18,126,64,149)(19,137,65,160)(20,128,66,151)(21,53,108,93)(22,44,109,84)(23,55,110,95)(24,46,111,86)(25,57,112,97)(26,48,113,88)(27,59,114,99)(28,50,115,90)(29,41,116,81)(30,52,117,92)(31,43,118,83)(32,54,119,94)(33,45,120,85)(34,56,101,96)(35,47,102,87)(36,58,103,98)(37,49,104,89)(38,60,105,100)(39,51,106,91)(40,42,107,82), (1,40)(2,21)(3,22)(4,23)(5,24)(6,25)(7,26)(8,27)(9,28)(10,29)(11,30)(12,31)(13,32)(14,33)(15,34)(16,35)(17,36)(18,37)(19,38)(20,39)(41,141)(42,142)(43,143)(44,144)(45,145)(46,146)(47,147)(48,148)(49,149)(50,150)(51,151)(52,152)(53,153)(54,154)(55,155)(56,156)(57,157)(58,158)(59,159)(60,160)(61,101)(62,102)(63,103)(64,104)(65,105)(66,106)(67,107)(68,108)(69,109)(70,110)(71,111)(72,112)(73,113)(74,114)(75,115)(76,116)(77,117)(78,118)(79,119)(80,120)(81,138)(82,139)(83,140)(84,121)(85,122)(86,123)(87,124)(88,125)(89,126)(90,127)(91,128)(92,129)(93,130)(94,131)(95,132)(96,133)(97,134)(98,135)(99,136)(100,137) );
G=PermutationGroup([(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,20),(2,19),(3,18),(4,17),(5,16),(6,15),(7,14),(8,13),(9,12),(10,11),(21,28),(22,27),(23,26),(24,25),(29,40),(30,39),(31,38),(32,37),(33,36),(34,35),(41,47),(42,46),(43,45),(48,60),(49,59),(50,58),(51,57),(52,56),(53,55),(61,72),(62,71),(63,70),(64,69),(65,68),(66,67),(73,80),(74,79),(75,78),(76,77),(81,87),(82,86),(83,85),(88,100),(89,99),(90,98),(91,97),(92,96),(93,95),(101,102),(103,120),(104,119),(105,118),(106,117),(107,116),(108,115),(109,114),(110,113),(111,112),(121,131),(122,130),(123,129),(124,128),(125,127),(132,140),(133,139),(134,138),(135,137),(141,157),(142,156),(143,155),(144,154),(145,153),(146,152),(147,151),(148,150),(158,160)], [(1,139,67,142),(2,130,68,153),(3,121,69,144),(4,132,70,155),(5,123,71,146),(6,134,72,157),(7,125,73,148),(8,136,74,159),(9,127,75,150),(10,138,76,141),(11,129,77,152),(12,140,78,143),(13,131,79,154),(14,122,80,145),(15,133,61,156),(16,124,62,147),(17,135,63,158),(18,126,64,149),(19,137,65,160),(20,128,66,151),(21,53,108,93),(22,44,109,84),(23,55,110,95),(24,46,111,86),(25,57,112,97),(26,48,113,88),(27,59,114,99),(28,50,115,90),(29,41,116,81),(30,52,117,92),(31,43,118,83),(32,54,119,94),(33,45,120,85),(34,56,101,96),(35,47,102,87),(36,58,103,98),(37,49,104,89),(38,60,105,100),(39,51,106,91),(40,42,107,82)], [(1,40),(2,21),(3,22),(4,23),(5,24),(6,25),(7,26),(8,27),(9,28),(10,29),(11,30),(12,31),(13,32),(14,33),(15,34),(16,35),(17,36),(18,37),(19,38),(20,39),(41,141),(42,142),(43,143),(44,144),(45,145),(46,146),(47,147),(48,148),(49,149),(50,150),(51,151),(52,152),(53,153),(54,154),(55,155),(56,156),(57,157),(58,158),(59,159),(60,160),(61,101),(62,102),(63,103),(64,104),(65,105),(66,106),(67,107),(68,108),(69,109),(70,110),(71,111),(72,112),(73,113),(74,114),(75,115),(76,116),(77,117),(78,118),(79,119),(80,120),(81,138),(82,139),(83,140),(84,121),(85,122),(86,123),(87,124),(88,125),(89,126),(90,127),(91,128),(92,129),(93,130),(94,131),(95,132),(96,133),(97,134),(98,135),(99,136),(100,137)])
47 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 5A | 5B | 8A | 8B | 8C | 8D | 10A | ··· | 10F | 10G | 10H | 10I | 10J | 10K | 10L | 10M | 10N | 20A | ··· | 20H | 20I | 20J | 20K | 20L |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 5 | 5 | 8 | 8 | 8 | 8 | 10 | ··· | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 20 | ··· | 20 | 20 | 20 | 20 | 20 |
size | 1 | 1 | 1 | 1 | 4 | 8 | 20 | 20 | 2 | 2 | 2 | 2 | 8 | 20 | 20 | 2 | 2 | 20 | 20 | 20 | 20 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 4 | ··· | 4 | 8 | 8 | 8 | 8 |
47 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | |||||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | D4 | D4 | D4 | D4 | D5 | D10 | D10 | D10 | C4○D8 | C5⋊D4 | C5⋊D4 | C8⋊C22 | D4×D5 | D4.D10 | D4.8D10 |
kernel | D20⋊17D4 | D20⋊6C4 | C10.Q16 | C20.55D4 | C2×D4⋊D5 | C2×D4.D5 | C5×C4⋊D4 | C2×C4○D20 | Dic10 | D20 | C2×C20 | C22×C10 | C4⋊D4 | C4⋊C4 | C22×C4 | C2×D4 | C10 | C2×C4 | C23 | C10 | C4 | C2 | C2 |
# reps | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 1 | 4 | 4 | 4 |
Matrix representation of D20⋊17D4 ►in GL6(𝔽41)
40 | 0 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 35 | 1 | 0 | 0 |
0 | 0 | 5 | 40 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 21 |
0 | 0 | 0 | 0 | 37 | 40 |
40 | 0 | 0 | 0 | 0 | 0 |
39 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 40 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 21 |
0 | 0 | 0 | 0 | 0 | 40 |
9 | 32 | 0 | 0 | 0 | 0 |
0 | 32 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 0 | 0 |
0 | 0 | 0 | 40 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 13 |
0 | 0 | 0 | 0 | 22 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
2 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 32 | 16 |
0 | 0 | 0 | 0 | 36 | 9 |
G:=sub<GL(6,GF(41))| [40,0,0,0,0,0,0,40,0,0,0,0,0,0,35,5,0,0,0,0,1,40,0,0,0,0,0,0,1,37,0,0,0,0,21,40],[40,39,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,40,1,0,0,0,0,0,0,1,0,0,0,0,0,21,40],[9,0,0,0,0,0,32,32,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,0,22,0,0,0,0,13,0],[1,2,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,32,36,0,0,0,0,16,9] >;
D20⋊17D4 in GAP, Magma, Sage, TeX
D_{20}\rtimes_{17}D_4
% in TeX
G:=Group("D20:17D4");
// GroupNames label
G:=SmallGroup(320,664);
// by ID
G=gap.SmallGroup(320,664);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,232,254,219,1123,297,136,12550]);
// Polycyclic
G:=Group<a,b,c,d|a^20=b^2=c^4=d^2=1,b*a*b=a^-1,c*a*c^-1=a^11,a*d=d*a,c*b*c^-1=a^5*b,d*b*d=a^10*b,d*c*d=c^-1>;
// generators/relations