Copied to
clipboard

G = C4011D4order 320 = 26·5

11st semidirect product of C40 and D4 acting via D4/C2=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C4011D4, (C2×D8)⋊8D5, C52C89D4, (C10×D8)⋊9C2, C83(C5⋊D4), C54(C83D4), C408C49C2, C4.21(D4×D5), C20⋊D45C2, (C2×C8).85D10, (C2×D4).62D10, C20.164(C2×D4), C20.17D44C2, (C2×Dic5).72D4, C22.254(D4×D5), C2.28(D8⋊D5), C2.18(C20⋊D4), C10.27(C41D4), C10.49(C8⋊C22), (C2×C20).431C23, (C2×C40).147C22, (D4×C10).81C22, (C2×D20).119C22, (C4×Dic5).51C22, (C2×Dic10).124C22, C4.5(C2×C5⋊D4), (C2×D4⋊D5)⋊18C2, (C2×C40⋊C2)⋊23C2, (C2×D4.D5)⋊17C2, (C2×C10).344(C2×D4), (C2×C4).521(C22×D5), (C2×C52C8).148C22, SmallGroup(320,781)

Series: Derived Chief Lower central Upper central

C1C2×C20 — C4011D4
C1C5C10C20C2×C20C4×Dic5C20⋊D4 — C4011D4
C5C10C2×C20 — C4011D4
C1C22C2×C4C2×D8

Generators and relations for C4011D4
 G = < a,b,c | a40=b4=c2=1, bab-1=a29, cac=a19, cbc=b-1 >

Subgroups: 686 in 144 conjugacy classes, 43 normal (31 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C5, C8, C8, C2×C4, C2×C4, D4, Q8, C23, D5, C10, C10, C10, C42, C22⋊C4, C2×C8, C2×C8, D8, SD16, C2×D4, C2×D4, C2×Q8, Dic5, C20, D10, C2×C10, C2×C10, C8⋊C4, C4.4D4, C41D4, C2×D8, C2×D8, C2×SD16, C52C8, C40, Dic10, D20, C2×Dic5, C2×Dic5, C5⋊D4, C2×C20, C5×D4, C22×D5, C22×C10, C83D4, C40⋊C2, C2×C52C8, C4×Dic5, D4⋊D5, D4.D5, C23.D5, C2×C40, C5×D8, C2×Dic10, C2×D20, C2×C5⋊D4, D4×C10, C408C4, C2×C40⋊C2, C2×D4⋊D5, C2×D4.D5, C20.17D4, C20⋊D4, C10×D8, C4011D4
Quotients: C1, C2, C22, D4, C23, D5, C2×D4, D10, C41D4, C8⋊C22, C5⋊D4, C22×D5, C83D4, D4×D5, C2×C5⋊D4, D8⋊D5, C20⋊D4, C4011D4

Smallest permutation representation of C4011D4
On 160 points
Generators in S160
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 81 71 131)(2 110 72 160)(3 99 73 149)(4 88 74 138)(5 117 75 127)(6 106 76 156)(7 95 77 145)(8 84 78 134)(9 113 79 123)(10 102 80 152)(11 91 41 141)(12 120 42 130)(13 109 43 159)(14 98 44 148)(15 87 45 137)(16 116 46 126)(17 105 47 155)(18 94 48 144)(19 83 49 133)(20 112 50 122)(21 101 51 151)(22 90 52 140)(23 119 53 129)(24 108 54 158)(25 97 55 147)(26 86 56 136)(27 115 57 125)(28 104 58 154)(29 93 59 143)(30 82 60 132)(31 111 61 121)(32 100 62 150)(33 89 63 139)(34 118 64 128)(35 107 65 157)(36 96 66 146)(37 85 67 135)(38 114 68 124)(39 103 69 153)(40 92 70 142)
(2 20)(3 39)(4 18)(5 37)(6 16)(7 35)(8 14)(9 33)(10 12)(11 31)(13 29)(15 27)(17 25)(19 23)(22 40)(24 38)(26 36)(28 34)(30 32)(41 61)(42 80)(43 59)(44 78)(45 57)(46 76)(47 55)(48 74)(49 53)(50 72)(52 70)(54 68)(56 66)(58 64)(60 62)(63 79)(65 77)(67 75)(69 73)(81 131)(82 150)(83 129)(84 148)(85 127)(86 146)(87 125)(88 144)(89 123)(90 142)(91 121)(92 140)(93 159)(94 138)(95 157)(96 136)(97 155)(98 134)(99 153)(100 132)(101 151)(102 130)(103 149)(104 128)(105 147)(106 126)(107 145)(108 124)(109 143)(110 122)(111 141)(112 160)(113 139)(114 158)(115 137)(116 156)(117 135)(118 154)(119 133)(120 152)

G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,81,71,131)(2,110,72,160)(3,99,73,149)(4,88,74,138)(5,117,75,127)(6,106,76,156)(7,95,77,145)(8,84,78,134)(9,113,79,123)(10,102,80,152)(11,91,41,141)(12,120,42,130)(13,109,43,159)(14,98,44,148)(15,87,45,137)(16,116,46,126)(17,105,47,155)(18,94,48,144)(19,83,49,133)(20,112,50,122)(21,101,51,151)(22,90,52,140)(23,119,53,129)(24,108,54,158)(25,97,55,147)(26,86,56,136)(27,115,57,125)(28,104,58,154)(29,93,59,143)(30,82,60,132)(31,111,61,121)(32,100,62,150)(33,89,63,139)(34,118,64,128)(35,107,65,157)(36,96,66,146)(37,85,67,135)(38,114,68,124)(39,103,69,153)(40,92,70,142), (2,20)(3,39)(4,18)(5,37)(6,16)(7,35)(8,14)(9,33)(10,12)(11,31)(13,29)(15,27)(17,25)(19,23)(22,40)(24,38)(26,36)(28,34)(30,32)(41,61)(42,80)(43,59)(44,78)(45,57)(46,76)(47,55)(48,74)(49,53)(50,72)(52,70)(54,68)(56,66)(58,64)(60,62)(63,79)(65,77)(67,75)(69,73)(81,131)(82,150)(83,129)(84,148)(85,127)(86,146)(87,125)(88,144)(89,123)(90,142)(91,121)(92,140)(93,159)(94,138)(95,157)(96,136)(97,155)(98,134)(99,153)(100,132)(101,151)(102,130)(103,149)(104,128)(105,147)(106,126)(107,145)(108,124)(109,143)(110,122)(111,141)(112,160)(113,139)(114,158)(115,137)(116,156)(117,135)(118,154)(119,133)(120,152)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,81,71,131)(2,110,72,160)(3,99,73,149)(4,88,74,138)(5,117,75,127)(6,106,76,156)(7,95,77,145)(8,84,78,134)(9,113,79,123)(10,102,80,152)(11,91,41,141)(12,120,42,130)(13,109,43,159)(14,98,44,148)(15,87,45,137)(16,116,46,126)(17,105,47,155)(18,94,48,144)(19,83,49,133)(20,112,50,122)(21,101,51,151)(22,90,52,140)(23,119,53,129)(24,108,54,158)(25,97,55,147)(26,86,56,136)(27,115,57,125)(28,104,58,154)(29,93,59,143)(30,82,60,132)(31,111,61,121)(32,100,62,150)(33,89,63,139)(34,118,64,128)(35,107,65,157)(36,96,66,146)(37,85,67,135)(38,114,68,124)(39,103,69,153)(40,92,70,142), (2,20)(3,39)(4,18)(5,37)(6,16)(7,35)(8,14)(9,33)(10,12)(11,31)(13,29)(15,27)(17,25)(19,23)(22,40)(24,38)(26,36)(28,34)(30,32)(41,61)(42,80)(43,59)(44,78)(45,57)(46,76)(47,55)(48,74)(49,53)(50,72)(52,70)(54,68)(56,66)(58,64)(60,62)(63,79)(65,77)(67,75)(69,73)(81,131)(82,150)(83,129)(84,148)(85,127)(86,146)(87,125)(88,144)(89,123)(90,142)(91,121)(92,140)(93,159)(94,138)(95,157)(96,136)(97,155)(98,134)(99,153)(100,132)(101,151)(102,130)(103,149)(104,128)(105,147)(106,126)(107,145)(108,124)(109,143)(110,122)(111,141)(112,160)(113,139)(114,158)(115,137)(116,156)(117,135)(118,154)(119,133)(120,152) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,81,71,131),(2,110,72,160),(3,99,73,149),(4,88,74,138),(5,117,75,127),(6,106,76,156),(7,95,77,145),(8,84,78,134),(9,113,79,123),(10,102,80,152),(11,91,41,141),(12,120,42,130),(13,109,43,159),(14,98,44,148),(15,87,45,137),(16,116,46,126),(17,105,47,155),(18,94,48,144),(19,83,49,133),(20,112,50,122),(21,101,51,151),(22,90,52,140),(23,119,53,129),(24,108,54,158),(25,97,55,147),(26,86,56,136),(27,115,57,125),(28,104,58,154),(29,93,59,143),(30,82,60,132),(31,111,61,121),(32,100,62,150),(33,89,63,139),(34,118,64,128),(35,107,65,157),(36,96,66,146),(37,85,67,135),(38,114,68,124),(39,103,69,153),(40,92,70,142)], [(2,20),(3,39),(4,18),(5,37),(6,16),(7,35),(8,14),(9,33),(10,12),(11,31),(13,29),(15,27),(17,25),(19,23),(22,40),(24,38),(26,36),(28,34),(30,32),(41,61),(42,80),(43,59),(44,78),(45,57),(46,76),(47,55),(48,74),(49,53),(50,72),(52,70),(54,68),(56,66),(58,64),(60,62),(63,79),(65,77),(67,75),(69,73),(81,131),(82,150),(83,129),(84,148),(85,127),(86,146),(87,125),(88,144),(89,123),(90,142),(91,121),(92,140),(93,159),(94,138),(95,157),(96,136),(97,155),(98,134),(99,153),(100,132),(101,151),(102,130),(103,149),(104,128),(105,147),(106,126),(107,145),(108,124),(109,143),(110,122),(111,141),(112,160),(113,139),(114,158),(115,137),(116,156),(117,135),(118,154),(119,133),(120,152)]])

44 conjugacy classes

class 1 2A2B2C2D2E2F4A4B4C4D4E5A5B8A8B8C8D10A···10F10G···10N20A20B20C20D40A···40H
order12222224444455888810···1010···102020202040···40
size1111884022202040224420202···28···844444···4

44 irreducible representations

dim1111111122222224444
type+++++++++++++++++
imageC1C2C2C2C2C2C2C2D4D4D4D5D10D10C5⋊D4C8⋊C22D4×D5D4×D5D8⋊D5
kernelC4011D4C408C4C2×C40⋊C2C2×D4⋊D5C2×D4.D5C20.17D4C20⋊D4C10×D8C52C8C40C2×Dic5C2×D8C2×C8C2×D4C8C10C4C22C2
# reps1111111122222482228

Matrix representation of C4011D4 in GL10(𝔽41)

1000000000
0100000000
0020382040000
0026352000000
0021372130000
002101560000
00000035381111
0000003111247
00000033620
0000006131834
,
17200000000
192400000000
00212420240000
00212026210000
00202421240000
00262121200000
000000341190
000000253322
0000003732034
000000743915
,
40000000000
17100000000
0061000000
00635000000
000035400000
00003560000
0000001000
000000234000
00000022710
00000026174040

G:=sub<GL(10,GF(41))| [1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,20,26,21,21,0,0,0,0,0,0,38,35,37,0,0,0,0,0,0,0,20,20,21,15,0,0,0,0,0,0,4,0,3,6,0,0,0,0,0,0,0,0,0,0,35,31,3,6,0,0,0,0,0,0,38,11,36,13,0,0,0,0,0,0,11,24,2,18,0,0,0,0,0,0,11,7,0,34],[17,19,0,0,0,0,0,0,0,0,2,24,0,0,0,0,0,0,0,0,0,0,21,21,20,26,0,0,0,0,0,0,24,20,24,21,0,0,0,0,0,0,20,26,21,21,0,0,0,0,0,0,24,21,24,20,0,0,0,0,0,0,0,0,0,0,34,25,37,7,0,0,0,0,0,0,11,33,32,4,0,0,0,0,0,0,9,2,0,39,0,0,0,0,0,0,0,2,34,15],[40,17,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,6,6,0,0,0,0,0,0,0,0,1,35,0,0,0,0,0,0,0,0,0,0,35,35,0,0,0,0,0,0,0,0,40,6,0,0,0,0,0,0,0,0,0,0,1,23,22,26,0,0,0,0,0,0,0,40,7,17,0,0,0,0,0,0,0,0,1,40,0,0,0,0,0,0,0,0,0,40] >;

C4011D4 in GAP, Magma, Sage, TeX

C_{40}\rtimes_{11}D_4
% in TeX

G:=Group("C40:11D4");
// GroupNames label

G:=SmallGroup(320,781);
// by ID

G=gap.SmallGroup(320,781);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,112,253,1094,135,570,297,136,12550]);
// Polycyclic

G:=Group<a,b,c|a^40=b^4=c^2=1,b*a*b^-1=a^29,c*a*c=a^19,c*b*c=b^-1>;
// generators/relations

׿
×
𝔽