direct product, metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C2×D4⋊D5, C10⋊2D8, D4⋊3D10, C20.14D4, D20⋊5C22, C20.11C23, C5⋊3(C2×D8), (C2×D4)⋊1D5, (C2×D20)⋊8C2, (D4×C10)⋊1C2, C5⋊2C8⋊7C22, C10.44(C2×D4), (C2×C10).38D4, (C2×C4).47D10, (C5×D4)⋊3C22, C4.5(C5⋊D4), C4.11(C22×D5), (C2×C20).29C22, C22.21(C5⋊D4), (C2×C5⋊2C8)⋊4C2, C2.8(C2×C5⋊D4), SmallGroup(160,152)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C2×D4⋊D5
G = < a,b,c,d,e | a2=b4=c2=d5=e2=1, ab=ba, ac=ca, ad=da, ae=ea, cbc=ebe=b-1, bd=db, cd=dc, ece=bc, ede=d-1 >
Subgroups: 280 in 76 conjugacy classes, 33 normal (17 characteristic)
C1, C2, C2, C2, C4, C22, C22, C5, C8, C2×C4, D4, D4, C23, D5, C10, C10, C10, C2×C8, D8, C2×D4, C2×D4, C20, D10, C2×C10, C2×C10, C2×D8, C5⋊2C8, D20, D20, C2×C20, C5×D4, C5×D4, C22×D5, C22×C10, C2×C5⋊2C8, D4⋊D5, C2×D20, D4×C10, C2×D4⋊D5
Quotients: C1, C2, C22, D4, C23, D5, D8, C2×D4, D10, C2×D8, C5⋊D4, C22×D5, D4⋊D5, C2×C5⋊D4, C2×D4⋊D5
(1 41)(2 42)(3 43)(4 44)(5 45)(6 46)(7 47)(8 48)(9 49)(10 50)(11 51)(12 52)(13 53)(14 54)(15 55)(16 56)(17 57)(18 58)(19 59)(20 60)(21 61)(22 62)(23 63)(24 64)(25 65)(26 66)(27 67)(28 68)(29 69)(30 70)(31 71)(32 72)(33 73)(34 74)(35 75)(36 76)(37 77)(38 78)(39 79)(40 80)
(1 16 6 11)(2 17 7 12)(3 18 8 13)(4 19 9 14)(5 20 10 15)(21 31 26 36)(22 32 27 37)(23 33 28 38)(24 34 29 39)(25 35 30 40)(41 56 46 51)(42 57 47 52)(43 58 48 53)(44 59 49 54)(45 60 50 55)(61 71 66 76)(62 72 67 77)(63 73 68 78)(64 74 69 79)(65 75 70 80)
(1 76)(2 77)(3 78)(4 79)(5 80)(6 71)(7 72)(8 73)(9 74)(10 75)(11 61)(12 62)(13 63)(14 64)(15 65)(16 66)(17 67)(18 68)(19 69)(20 70)(21 51)(22 52)(23 53)(24 54)(25 55)(26 56)(27 57)(28 58)(29 59)(30 60)(31 46)(32 47)(33 48)(34 49)(35 50)(36 41)(37 42)(38 43)(39 44)(40 45)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45)(46 47 48 49 50)(51 52 53 54 55)(56 57 58 59 60)(61 62 63 64 65)(66 67 68 69 70)(71 72 73 74 75)(76 77 78 79 80)
(1 45)(2 44)(3 43)(4 42)(5 41)(6 50)(7 49)(8 48)(9 47)(10 46)(11 60)(12 59)(13 58)(14 57)(15 56)(16 55)(17 54)(18 53)(19 52)(20 51)(21 75)(22 74)(23 73)(24 72)(25 71)(26 80)(27 79)(28 78)(29 77)(30 76)(31 65)(32 64)(33 63)(34 62)(35 61)(36 70)(37 69)(38 68)(39 67)(40 66)
G:=sub<Sym(80)| (1,41)(2,42)(3,43)(4,44)(5,45)(6,46)(7,47)(8,48)(9,49)(10,50)(11,51)(12,52)(13,53)(14,54)(15,55)(16,56)(17,57)(18,58)(19,59)(20,60)(21,61)(22,62)(23,63)(24,64)(25,65)(26,66)(27,67)(28,68)(29,69)(30,70)(31,71)(32,72)(33,73)(34,74)(35,75)(36,76)(37,77)(38,78)(39,79)(40,80), (1,16,6,11)(2,17,7,12)(3,18,8,13)(4,19,9,14)(5,20,10,15)(21,31,26,36)(22,32,27,37)(23,33,28,38)(24,34,29,39)(25,35,30,40)(41,56,46,51)(42,57,47,52)(43,58,48,53)(44,59,49,54)(45,60,50,55)(61,71,66,76)(62,72,67,77)(63,73,68,78)(64,74,69,79)(65,75,70,80), (1,76)(2,77)(3,78)(4,79)(5,80)(6,71)(7,72)(8,73)(9,74)(10,75)(11,61)(12,62)(13,63)(14,64)(15,65)(16,66)(17,67)(18,68)(19,69)(20,70)(21,51)(22,52)(23,53)(24,54)(25,55)(26,56)(27,57)(28,58)(29,59)(30,60)(31,46)(32,47)(33,48)(34,49)(35,50)(36,41)(37,42)(38,43)(39,44)(40,45), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80), (1,45)(2,44)(3,43)(4,42)(5,41)(6,50)(7,49)(8,48)(9,47)(10,46)(11,60)(12,59)(13,58)(14,57)(15,56)(16,55)(17,54)(18,53)(19,52)(20,51)(21,75)(22,74)(23,73)(24,72)(25,71)(26,80)(27,79)(28,78)(29,77)(30,76)(31,65)(32,64)(33,63)(34,62)(35,61)(36,70)(37,69)(38,68)(39,67)(40,66)>;
G:=Group( (1,41)(2,42)(3,43)(4,44)(5,45)(6,46)(7,47)(8,48)(9,49)(10,50)(11,51)(12,52)(13,53)(14,54)(15,55)(16,56)(17,57)(18,58)(19,59)(20,60)(21,61)(22,62)(23,63)(24,64)(25,65)(26,66)(27,67)(28,68)(29,69)(30,70)(31,71)(32,72)(33,73)(34,74)(35,75)(36,76)(37,77)(38,78)(39,79)(40,80), (1,16,6,11)(2,17,7,12)(3,18,8,13)(4,19,9,14)(5,20,10,15)(21,31,26,36)(22,32,27,37)(23,33,28,38)(24,34,29,39)(25,35,30,40)(41,56,46,51)(42,57,47,52)(43,58,48,53)(44,59,49,54)(45,60,50,55)(61,71,66,76)(62,72,67,77)(63,73,68,78)(64,74,69,79)(65,75,70,80), (1,76)(2,77)(3,78)(4,79)(5,80)(6,71)(7,72)(8,73)(9,74)(10,75)(11,61)(12,62)(13,63)(14,64)(15,65)(16,66)(17,67)(18,68)(19,69)(20,70)(21,51)(22,52)(23,53)(24,54)(25,55)(26,56)(27,57)(28,58)(29,59)(30,60)(31,46)(32,47)(33,48)(34,49)(35,50)(36,41)(37,42)(38,43)(39,44)(40,45), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80), (1,45)(2,44)(3,43)(4,42)(5,41)(6,50)(7,49)(8,48)(9,47)(10,46)(11,60)(12,59)(13,58)(14,57)(15,56)(16,55)(17,54)(18,53)(19,52)(20,51)(21,75)(22,74)(23,73)(24,72)(25,71)(26,80)(27,79)(28,78)(29,77)(30,76)(31,65)(32,64)(33,63)(34,62)(35,61)(36,70)(37,69)(38,68)(39,67)(40,66) );
G=PermutationGroup([[(1,41),(2,42),(3,43),(4,44),(5,45),(6,46),(7,47),(8,48),(9,49),(10,50),(11,51),(12,52),(13,53),(14,54),(15,55),(16,56),(17,57),(18,58),(19,59),(20,60),(21,61),(22,62),(23,63),(24,64),(25,65),(26,66),(27,67),(28,68),(29,69),(30,70),(31,71),(32,72),(33,73),(34,74),(35,75),(36,76),(37,77),(38,78),(39,79),(40,80)], [(1,16,6,11),(2,17,7,12),(3,18,8,13),(4,19,9,14),(5,20,10,15),(21,31,26,36),(22,32,27,37),(23,33,28,38),(24,34,29,39),(25,35,30,40),(41,56,46,51),(42,57,47,52),(43,58,48,53),(44,59,49,54),(45,60,50,55),(61,71,66,76),(62,72,67,77),(63,73,68,78),(64,74,69,79),(65,75,70,80)], [(1,76),(2,77),(3,78),(4,79),(5,80),(6,71),(7,72),(8,73),(9,74),(10,75),(11,61),(12,62),(13,63),(14,64),(15,65),(16,66),(17,67),(18,68),(19,69),(20,70),(21,51),(22,52),(23,53),(24,54),(25,55),(26,56),(27,57),(28,58),(29,59),(30,60),(31,46),(32,47),(33,48),(34,49),(35,50),(36,41),(37,42),(38,43),(39,44),(40,45)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45),(46,47,48,49,50),(51,52,53,54,55),(56,57,58,59,60),(61,62,63,64,65),(66,67,68,69,70),(71,72,73,74,75),(76,77,78,79,80)], [(1,45),(2,44),(3,43),(4,42),(5,41),(6,50),(7,49),(8,48),(9,47),(10,46),(11,60),(12,59),(13,58),(14,57),(15,56),(16,55),(17,54),(18,53),(19,52),(20,51),(21,75),(22,74),(23,73),(24,72),(25,71),(26,80),(27,79),(28,78),(29,77),(30,76),(31,65),(32,64),(33,63),(34,62),(35,61),(36,70),(37,69),(38,68),(39,67),(40,66)]])
C2×D4⋊D5 is a maximal subgroup of
D20.3D4 Dic5⋊4D8 D4⋊D20 D10⋊D8 D4⋊3D20 C5⋊(C8⋊2D4) D4⋊D5⋊6C4 D20⋊3D4 D20.D4 C42.48D10 C20⋊7D8 D4.1D20 D20⋊16D4 D20⋊17D4 (C2×C10)⋊D8 C4⋊D4⋊D5 D20.23D4 C42.64D10 C42.214D10 C20⋊2D8 C20⋊D8 C42.74D10 Dic5⋊D8 C40⋊5D4 C40⋊11D4 D20⋊D4 (C5×D4).D4 C40.43D4 D20⋊7D4 C40⋊9D4 M4(2).D10 (C2×C10)⋊8D8 (C5×D4)⋊14D4 C2×D5×D8 D8⋊5D10 D20.32C23
C2×D4⋊D5 is a maximal quotient of
(C2×C10).40D8 C20.50D8 C20⋊7D8 (C2×C10).D8 D20⋊16D4 (C2×C10)⋊D8 C20.16D8 C20⋊2D8 C20⋊D8 C20.17D8 D20⋊6Q8 C20.D8 D8.D10 Q16.D10 D8⋊D10 C40.30C23 C40.31C23 (C2×C10)⋊8D8
34 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 4A | 4B | 5A | 5B | 8A | 8B | 8C | 8D | 10A | ··· | 10F | 10G | ··· | 10N | 20A | 20B | 20C | 20D |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 5 | 5 | 8 | 8 | 8 | 8 | 10 | ··· | 10 | 10 | ··· | 10 | 20 | 20 | 20 | 20 |
size | 1 | 1 | 1 | 1 | 4 | 4 | 20 | 20 | 2 | 2 | 2 | 2 | 10 | 10 | 10 | 10 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | 4 | 4 | 4 |
34 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | ||
image | C1 | C2 | C2 | C2 | C2 | D4 | D4 | D5 | D8 | D10 | D10 | C5⋊D4 | C5⋊D4 | D4⋊D5 |
kernel | C2×D4⋊D5 | C2×C5⋊2C8 | D4⋊D5 | C2×D20 | D4×C10 | C20 | C2×C10 | C2×D4 | C10 | C2×C4 | D4 | C4 | C22 | C2 |
# reps | 1 | 1 | 4 | 1 | 1 | 1 | 1 | 2 | 4 | 2 | 4 | 4 | 4 | 4 |
Matrix representation of C2×D4⋊D5 ►in GL4(𝔽41) generated by
40 | 0 | 0 | 0 |
0 | 40 | 0 | 0 |
0 | 0 | 40 | 0 |
0 | 0 | 0 | 40 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 1 | 39 |
0 | 0 | 1 | 40 |
40 | 0 | 0 | 0 |
0 | 40 | 0 | 0 |
0 | 0 | 0 | 17 |
0 | 0 | 29 | 0 |
35 | 40 | 0 | 0 |
36 | 40 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
0 | 7 | 0 | 0 |
6 | 0 | 0 | 0 |
0 | 0 | 40 | 0 |
0 | 0 | 40 | 1 |
G:=sub<GL(4,GF(41))| [40,0,0,0,0,40,0,0,0,0,40,0,0,0,0,40],[1,0,0,0,0,1,0,0,0,0,1,1,0,0,39,40],[40,0,0,0,0,40,0,0,0,0,0,29,0,0,17,0],[35,36,0,0,40,40,0,0,0,0,1,0,0,0,0,1],[0,6,0,0,7,0,0,0,0,0,40,40,0,0,0,1] >;
C2×D4⋊D5 in GAP, Magma, Sage, TeX
C_2\times D_4\rtimes D_5
% in TeX
G:=Group("C2xD4:D5");
// GroupNames label
G:=SmallGroup(160,152);
// by ID
G=gap.SmallGroup(160,152);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-2,-5,218,579,159,69,4613]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^4=c^2=d^5=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=e*b*e=b^-1,b*d=d*b,c*d=d*c,e*c*e=b*c,e*d*e=d^-1>;
// generators/relations