Copied to
clipboard

G = (C2×C10)⋊D8order 320 = 26·5

3rd semidirect product of C2×C10 and D8 acting via D8/C4=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: (C2×C10)⋊3D8, C4⋊D43D5, C52C822D4, C53(C87D4), C4⋊C4.58D10, C10.55(C2×D8), C4.170(D4×D5), C207D423C2, C221(D4⋊D5), (C2×D4).38D10, (C2×C20).263D4, C20.147(C2×D4), D206C435C2, C10.97(C4○D8), D4⋊Dic515C2, C10.D836C2, (C22×C10).84D4, C20.183(C4○D4), C4.59(D42D5), C10.93(C4⋊D4), (C2×C20).357C23, (D4×C10).54C22, (C22×C4).340D10, C23.39(C5⋊D4), (C2×D20).101C22, C4⋊Dic5.142C22, C2.14(Dic5⋊D4), C2.16(D4.8D10), (C22×C20).161C22, (C2×D4⋊D5)⋊10C2, (C5×C4⋊D4)⋊3C2, C2.10(C2×D4⋊D5), (C22×C52C8)⋊3C2, (C2×C10).488(C2×D4), (C2×C4).105(C5⋊D4), (C5×C4⋊C4).105C22, (C2×C4).457(C22×D5), C22.163(C2×C5⋊D4), (C2×C52C8).256C22, SmallGroup(320,665)

Series: Derived Chief Lower central Upper central

C1C2×C20 — (C2×C10)⋊D8
C1C5C10C20C2×C20C2×D20C207D4 — (C2×C10)⋊D8
C5C10C2×C20 — (C2×C10)⋊D8
C1C22C22×C4C4⋊D4

Generators and relations for (C2×C10)⋊D8
 G = < a,b,c,d | a2=b10=c8=d2=1, ab=ba, ac=ca, dad=ab5, cbc-1=dbd=b-1, dcd=c-1 >

Subgroups: 550 in 134 conjugacy classes, 45 normal (39 characteristic)
C1, C2, C2, C4, C4, C22, C22, C22, C5, C8, C2×C4, C2×C4, D4, C23, C23, D5, C10, C10, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, D8, C22×C4, C2×D4, C2×D4, Dic5, C20, C20, D10, C2×C10, C2×C10, C2×C10, D4⋊C4, C2.D8, C4⋊D4, C4⋊D4, C22×C8, C2×D8, C52C8, C52C8, D20, C2×Dic5, C5⋊D4, C2×C20, C2×C20, C5×D4, C22×D5, C22×C10, C22×C10, C87D4, C2×C52C8, C2×C52C8, C4⋊Dic5, D10⋊C4, D4⋊D5, C5×C22⋊C4, C5×C4⋊C4, C2×D20, C2×C5⋊D4, C22×C20, D4×C10, D4×C10, C10.D8, D206C4, D4⋊Dic5, C22×C52C8, C207D4, C2×D4⋊D5, C5×C4⋊D4, (C2×C10)⋊D8
Quotients: C1, C2, C22, D4, C23, D5, D8, C2×D4, C4○D4, D10, C4⋊D4, C2×D8, C4○D8, C5⋊D4, C22×D5, C87D4, D4⋊D5, D4×D5, D42D5, C2×C5⋊D4, C2×D4⋊D5, Dic5⋊D4, D4.8D10, (C2×C10)⋊D8

Smallest permutation representation of (C2×C10)⋊D8
On 160 points
Generators in S160
(1 100)(2 91)(3 92)(4 93)(5 94)(6 95)(7 96)(8 97)(9 98)(10 99)(11 85)(12 86)(13 87)(14 88)(15 89)(16 90)(17 81)(18 82)(19 83)(20 84)(21 101)(22 102)(23 103)(24 104)(25 105)(26 106)(27 107)(28 108)(29 109)(30 110)(31 111)(32 112)(33 113)(34 114)(35 115)(36 116)(37 117)(38 118)(39 119)(40 120)(41 121)(42 122)(43 123)(44 124)(45 125)(46 126)(47 127)(48 128)(49 129)(50 130)(51 131)(52 132)(53 133)(54 134)(55 135)(56 136)(57 137)(58 138)(59 139)(60 140)(61 141)(62 142)(63 143)(64 144)(65 145)(66 146)(67 147)(68 148)(69 149)(70 150)(71 151)(72 152)(73 153)(74 154)(75 155)(76 156)(77 157)(78 158)(79 159)(80 160)
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160)
(1 60 40 90 30 70 50 80)(2 59 31 89 21 69 41 79)(3 58 32 88 22 68 42 78)(4 57 33 87 23 67 43 77)(5 56 34 86 24 66 44 76)(6 55 35 85 25 65 45 75)(7 54 36 84 26 64 46 74)(8 53 37 83 27 63 47 73)(9 52 38 82 28 62 48 72)(10 51 39 81 29 61 49 71)(11 105 145 125 155 95 135 115)(12 104 146 124 156 94 136 114)(13 103 147 123 157 93 137 113)(14 102 148 122 158 92 138 112)(15 101 149 121 159 91 139 111)(16 110 150 130 160 100 140 120)(17 109 141 129 151 99 131 119)(18 108 142 128 152 98 132 118)(19 107 143 127 153 97 133 117)(20 106 144 126 154 96 134 116)
(2 10)(3 9)(4 8)(5 7)(11 150)(12 149)(13 148)(14 147)(15 146)(16 145)(17 144)(18 143)(19 142)(20 141)(21 29)(22 28)(23 27)(24 26)(31 49)(32 48)(33 47)(34 46)(35 45)(36 44)(37 43)(38 42)(39 41)(40 50)(51 79)(52 78)(53 77)(54 76)(55 75)(56 74)(57 73)(58 72)(59 71)(60 80)(61 89)(62 88)(63 87)(64 86)(65 85)(66 84)(67 83)(68 82)(69 81)(70 90)(91 94)(92 93)(95 100)(96 99)(97 98)(101 104)(102 103)(105 110)(106 109)(107 108)(111 124)(112 123)(113 122)(114 121)(115 130)(116 129)(117 128)(118 127)(119 126)(120 125)(131 154)(132 153)(133 152)(134 151)(135 160)(136 159)(137 158)(138 157)(139 156)(140 155)

G:=sub<Sym(160)| (1,100)(2,91)(3,92)(4,93)(5,94)(6,95)(7,96)(8,97)(9,98)(10,99)(11,85)(12,86)(13,87)(14,88)(15,89)(16,90)(17,81)(18,82)(19,83)(20,84)(21,101)(22,102)(23,103)(24,104)(25,105)(26,106)(27,107)(28,108)(29,109)(30,110)(31,111)(32,112)(33,113)(34,114)(35,115)(36,116)(37,117)(38,118)(39,119)(40,120)(41,121)(42,122)(43,123)(44,124)(45,125)(46,126)(47,127)(48,128)(49,129)(50,130)(51,131)(52,132)(53,133)(54,134)(55,135)(56,136)(57,137)(58,138)(59,139)(60,140)(61,141)(62,142)(63,143)(64,144)(65,145)(66,146)(67,147)(68,148)(69,149)(70,150)(71,151)(72,152)(73,153)(74,154)(75,155)(76,156)(77,157)(78,158)(79,159)(80,160), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,60,40,90,30,70,50,80)(2,59,31,89,21,69,41,79)(3,58,32,88,22,68,42,78)(4,57,33,87,23,67,43,77)(5,56,34,86,24,66,44,76)(6,55,35,85,25,65,45,75)(7,54,36,84,26,64,46,74)(8,53,37,83,27,63,47,73)(9,52,38,82,28,62,48,72)(10,51,39,81,29,61,49,71)(11,105,145,125,155,95,135,115)(12,104,146,124,156,94,136,114)(13,103,147,123,157,93,137,113)(14,102,148,122,158,92,138,112)(15,101,149,121,159,91,139,111)(16,110,150,130,160,100,140,120)(17,109,141,129,151,99,131,119)(18,108,142,128,152,98,132,118)(19,107,143,127,153,97,133,117)(20,106,144,126,154,96,134,116), (2,10)(3,9)(4,8)(5,7)(11,150)(12,149)(13,148)(14,147)(15,146)(16,145)(17,144)(18,143)(19,142)(20,141)(21,29)(22,28)(23,27)(24,26)(31,49)(32,48)(33,47)(34,46)(35,45)(36,44)(37,43)(38,42)(39,41)(40,50)(51,79)(52,78)(53,77)(54,76)(55,75)(56,74)(57,73)(58,72)(59,71)(60,80)(61,89)(62,88)(63,87)(64,86)(65,85)(66,84)(67,83)(68,82)(69,81)(70,90)(91,94)(92,93)(95,100)(96,99)(97,98)(101,104)(102,103)(105,110)(106,109)(107,108)(111,124)(112,123)(113,122)(114,121)(115,130)(116,129)(117,128)(118,127)(119,126)(120,125)(131,154)(132,153)(133,152)(134,151)(135,160)(136,159)(137,158)(138,157)(139,156)(140,155)>;

G:=Group( (1,100)(2,91)(3,92)(4,93)(5,94)(6,95)(7,96)(8,97)(9,98)(10,99)(11,85)(12,86)(13,87)(14,88)(15,89)(16,90)(17,81)(18,82)(19,83)(20,84)(21,101)(22,102)(23,103)(24,104)(25,105)(26,106)(27,107)(28,108)(29,109)(30,110)(31,111)(32,112)(33,113)(34,114)(35,115)(36,116)(37,117)(38,118)(39,119)(40,120)(41,121)(42,122)(43,123)(44,124)(45,125)(46,126)(47,127)(48,128)(49,129)(50,130)(51,131)(52,132)(53,133)(54,134)(55,135)(56,136)(57,137)(58,138)(59,139)(60,140)(61,141)(62,142)(63,143)(64,144)(65,145)(66,146)(67,147)(68,148)(69,149)(70,150)(71,151)(72,152)(73,153)(74,154)(75,155)(76,156)(77,157)(78,158)(79,159)(80,160), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,60,40,90,30,70,50,80)(2,59,31,89,21,69,41,79)(3,58,32,88,22,68,42,78)(4,57,33,87,23,67,43,77)(5,56,34,86,24,66,44,76)(6,55,35,85,25,65,45,75)(7,54,36,84,26,64,46,74)(8,53,37,83,27,63,47,73)(9,52,38,82,28,62,48,72)(10,51,39,81,29,61,49,71)(11,105,145,125,155,95,135,115)(12,104,146,124,156,94,136,114)(13,103,147,123,157,93,137,113)(14,102,148,122,158,92,138,112)(15,101,149,121,159,91,139,111)(16,110,150,130,160,100,140,120)(17,109,141,129,151,99,131,119)(18,108,142,128,152,98,132,118)(19,107,143,127,153,97,133,117)(20,106,144,126,154,96,134,116), (2,10)(3,9)(4,8)(5,7)(11,150)(12,149)(13,148)(14,147)(15,146)(16,145)(17,144)(18,143)(19,142)(20,141)(21,29)(22,28)(23,27)(24,26)(31,49)(32,48)(33,47)(34,46)(35,45)(36,44)(37,43)(38,42)(39,41)(40,50)(51,79)(52,78)(53,77)(54,76)(55,75)(56,74)(57,73)(58,72)(59,71)(60,80)(61,89)(62,88)(63,87)(64,86)(65,85)(66,84)(67,83)(68,82)(69,81)(70,90)(91,94)(92,93)(95,100)(96,99)(97,98)(101,104)(102,103)(105,110)(106,109)(107,108)(111,124)(112,123)(113,122)(114,121)(115,130)(116,129)(117,128)(118,127)(119,126)(120,125)(131,154)(132,153)(133,152)(134,151)(135,160)(136,159)(137,158)(138,157)(139,156)(140,155) );

G=PermutationGroup([[(1,100),(2,91),(3,92),(4,93),(5,94),(6,95),(7,96),(8,97),(9,98),(10,99),(11,85),(12,86),(13,87),(14,88),(15,89),(16,90),(17,81),(18,82),(19,83),(20,84),(21,101),(22,102),(23,103),(24,104),(25,105),(26,106),(27,107),(28,108),(29,109),(30,110),(31,111),(32,112),(33,113),(34,114),(35,115),(36,116),(37,117),(38,118),(39,119),(40,120),(41,121),(42,122),(43,123),(44,124),(45,125),(46,126),(47,127),(48,128),(49,129),(50,130),(51,131),(52,132),(53,133),(54,134),(55,135),(56,136),(57,137),(58,138),(59,139),(60,140),(61,141),(62,142),(63,143),(64,144),(65,145),(66,146),(67,147),(68,148),(69,149),(70,150),(71,151),(72,152),(73,153),(74,154),(75,155),(76,156),(77,157),(78,158),(79,159),(80,160)], [(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160)], [(1,60,40,90,30,70,50,80),(2,59,31,89,21,69,41,79),(3,58,32,88,22,68,42,78),(4,57,33,87,23,67,43,77),(5,56,34,86,24,66,44,76),(6,55,35,85,25,65,45,75),(7,54,36,84,26,64,46,74),(8,53,37,83,27,63,47,73),(9,52,38,82,28,62,48,72),(10,51,39,81,29,61,49,71),(11,105,145,125,155,95,135,115),(12,104,146,124,156,94,136,114),(13,103,147,123,157,93,137,113),(14,102,148,122,158,92,138,112),(15,101,149,121,159,91,139,111),(16,110,150,130,160,100,140,120),(17,109,141,129,151,99,131,119),(18,108,142,128,152,98,132,118),(19,107,143,127,153,97,133,117),(20,106,144,126,154,96,134,116)], [(2,10),(3,9),(4,8),(5,7),(11,150),(12,149),(13,148),(14,147),(15,146),(16,145),(17,144),(18,143),(19,142),(20,141),(21,29),(22,28),(23,27),(24,26),(31,49),(32,48),(33,47),(34,46),(35,45),(36,44),(37,43),(38,42),(39,41),(40,50),(51,79),(52,78),(53,77),(54,76),(55,75),(56,74),(57,73),(58,72),(59,71),(60,80),(61,89),(62,88),(63,87),(64,86),(65,85),(66,84),(67,83),(68,82),(69,81),(70,90),(91,94),(92,93),(95,100),(96,99),(97,98),(101,104),(102,103),(105,110),(106,109),(107,108),(111,124),(112,123),(113,122),(114,121),(115,130),(116,129),(117,128),(118,127),(119,126),(120,125),(131,154),(132,153),(133,152),(134,151),(135,160),(136,159),(137,158),(138,157),(139,156),(140,155)]])

50 conjugacy classes

class 1 2A2B2C2D2E2F2G4A4B4C4D4E4F5A5B8A···8H10A···10F10G10H10I10J10K10L10M10N20A···20H20I20J20K20L
order12222222444444558···810···10101010101010101020···2020202020
size11112284022228402210···102···2444488884···48888

50 irreducible representations

dim111111112222222222224444
type+++++++++++++++++-+
imageC1C2C2C2C2C2C2C2D4D4D4D5C4○D4D8D10D10D10C4○D8C5⋊D4C5⋊D4D4×D5D42D5D4⋊D5D4.8D10
kernel(C2×C10)⋊D8C10.D8D206C4D4⋊Dic5C22×C52C8C207D4C2×D4⋊D5C5×C4⋊D4C52C8C2×C20C22×C10C4⋊D4C20C2×C10C4⋊C4C22×C4C2×D4C10C2×C4C23C4C4C22C2
# reps111111112112242224442244

Matrix representation of (C2×C10)⋊D8 in GL6(𝔽41)

4000000
0400000
001000
000100
000009
0000320
,
34350000
700000
001000
000100
0000400
0000040
,
34350000
870000
000700
00352400
00002912
00002929
,
34350000
870000
001000
00214000
000010
0000040

G:=sub<GL(6,GF(41))| [40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,32,0,0,0,0,9,0],[34,7,0,0,0,0,35,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[34,8,0,0,0,0,35,7,0,0,0,0,0,0,0,35,0,0,0,0,7,24,0,0,0,0,0,0,29,29,0,0,0,0,12,29],[34,8,0,0,0,0,35,7,0,0,0,0,0,0,1,21,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,40] >;

(C2×C10)⋊D8 in GAP, Magma, Sage, TeX

(C_2\times C_{10})\rtimes D_8
% in TeX

G:=Group("(C2xC10):D8");
// GroupNames label

G:=SmallGroup(320,665);
// by ID

G=gap.SmallGroup(320,665);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,253,254,219,1123,297,136,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^10=c^8=d^2=1,a*b=b*a,a*c=c*a,d*a*d=a*b^5,c*b*c^-1=d*b*d=b^-1,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽