Extensions 1→N→G→Q→1 with N=C2xD4.D5 and Q=C2

Direct product G=NxQ with N=C2xD4.D5 and Q=C2
dρLabelID
C22xD4.D5160C2^2xD4.D5320,1466

Semidirect products G=N:Q with N=C2xD4.D5 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2xD4.D5):1C2 = D20.2D4φ: C2/C1C2 ⊆ Out C2xD4.D5808-(C2xD4.D5):1C2320,375
(C2xD4.D5):2C2 = Dic10:2D4φ: C2/C1C2 ⊆ Out C2xD4.D5160(C2xD4.D5):2C2320,389
(C2xD4.D5):3C2 = D20.8D4φ: C2/C1C2 ⊆ Out C2xD4.D580(C2xD4.D5):3C2320,403
(C2xD4.D5):4C2 = D10:SD16φ: C2/C1C2 ⊆ Out C2xD4.D5160(C2xD4.D5):4C2320,405
(C2xD4.D5):5C2 = C5:2C8:D4φ: C2/C1C2 ⊆ Out C2xD4.D5160(C2xD4.D5):5C2320,407
(C2xD4.D5):6C2 = D4.D20φ: C2/C1C2 ⊆ Out C2xD4.D5160(C2xD4.D5):6C2320,410
(C2xD4.D5):7C2 = D4.1D20φ: C2/C1C2 ⊆ Out C2xD4.D5160(C2xD4.D5):7C2320,643
(C2xD4.D5):8C2 = D20:17D4φ: C2/C1C2 ⊆ Out C2xD4.D5160(C2xD4.D5):8C2320,664
(C2xD4.D5):9C2 = Dic10:17D4φ: C2/C1C2 ⊆ Out C2xD4.D5160(C2xD4.D5):9C2320,667
(C2xD4.D5):10C2 = C5:2C8:23D4φ: C2/C1C2 ⊆ Out C2xD4.D5160(C2xD4.D5):10C2320,668
(C2xD4.D5):11C2 = C4.(D4xD5)φ: C2/C1C2 ⊆ Out C2xD4.D5160(C2xD4.D5):11C2320,669
(C2xD4.D5):12C2 = C42.214D10φ: C2/C1C2 ⊆ Out C2xD4.D5160(C2xD4.D5):12C2320,686
(C2xD4.D5):13C2 = C42.74D10φ: C2/C1C2 ⊆ Out C2xD4.D5160(C2xD4.D5):13C2320,701
(C2xD4.D5):14C2 = Dic10:9D4φ: C2/C1C2 ⊆ Out C2xD4.D5160(C2xD4.D5):14C2320,702
(C2xD4.D5):15C2 = C20:4SD16φ: C2/C1C2 ⊆ Out C2xD4.D5160(C2xD4.D5):15C2320,703
(C2xD4.D5):16C2 = (C2xD8).D5φ: C2/C1C2 ⊆ Out C2xD4.D5160(C2xD4.D5):16C2320,780
(C2xD4.D5):17C2 = C40:11D4φ: C2/C1C2 ⊆ Out C2xD4.D5160(C2xD4.D5):17C2320,781
(C2xD4.D5):18C2 = C40.22D4φ: C2/C1C2 ⊆ Out C2xD4.D5160(C2xD4.D5):18C2320,782
(C2xD4.D5):19C2 = Dic10:D4φ: C2/C1C2 ⊆ Out C2xD4.D5160(C2xD4.D5):19C2320,785
(C2xD4.D5):20C2 = D10:8SD16φ: C2/C1C2 ⊆ Out C2xD4.D5160(C2xD4.D5):20C2320,797
(C2xD4.D5):21C2 = C40:15D4φ: C2/C1C2 ⊆ Out C2xD4.D5160(C2xD4.D5):21C2320,802
(C2xD4.D5):22C2 = M4(2).13D10φ: C2/C1C2 ⊆ Out C2xD4.D5808-(C2xD4.D5):22C2320,827
(C2xD4.D5):23C2 = (C5xD4).31D4φ: C2/C1C2 ⊆ Out C2xD4.D580(C2xD4.D5):23C2320,845
(C2xD4.D5):24C2 = (C5xD4).32D4φ: C2/C1C2 ⊆ Out C2xD4.D5160(C2xD4.D5):24C2320,866
(C2xD4.D5):25C2 = C2xD8:D5φ: C2/C1C2 ⊆ Out C2xD4.D580(C2xD4.D5):25C2320,1427
(C2xD4.D5):26C2 = C2xD8:3D5φ: C2/C1C2 ⊆ Out C2xD4.D5160(C2xD4.D5):26C2320,1428
(C2xD4.D5):27C2 = C2xD5xSD16φ: C2/C1C2 ⊆ Out C2xD4.D580(C2xD4.D5):27C2320,1430
(C2xD4.D5):28C2 = C2xSD16:D5φ: C2/C1C2 ⊆ Out C2xD4.D5160(C2xD4.D5):28C2320,1432
(C2xD4.D5):29C2 = D8:6D10φ: C2/C1C2 ⊆ Out C2xD4.D5808-(C2xD4.D5):29C2320,1447
(C2xD4.D5):30C2 = C2xD4.D10φ: C2/C1C2 ⊆ Out C2xD4.D580(C2xD4.D5):30C2320,1465
(C2xD4.D5):31C2 = C2xD4.9D10φ: C2/C1C2 ⊆ Out C2xD4.D5160(C2xD4.D5):31C2320,1495
(C2xD4.D5):32C2 = D20.33C23φ: C2/C1C2 ⊆ Out C2xD4.D5808-(C2xD4.D5):32C2320,1508
(C2xD4.D5):33C2 = C2xD4.8D10φ: trivial image160(C2xD4.D5):33C2320,1493

Non-split extensions G=N.Q with N=C2xD4.D5 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2xD4.D5).1C2 = D4.D5:5C4φ: C2/C1C2 ⊆ Out C2xD4.D5160(C2xD4.D5).1C2320,384
(C2xD4.D5).2C2 = Dic5:6SD16φ: C2/C1C2 ⊆ Out C2xD4.D5160(C2xD4.D5).2C2320,385
(C2xD4.D5).3C2 = Dic10.D4φ: C2/C1C2 ⊆ Out C2xD4.D5160(C2xD4.D5).3C2320,394
(C2xD4.D5).4C2 = C42.51D10φ: C2/C1C2 ⊆ Out C2xD4.D5160(C2xD4.D5).4C2320,645
(C2xD4.D5).5C2 = D4.2D20φ: C2/C1C2 ⊆ Out C2xD4.D5160(C2xD4.D5).5C2320,646
(C2xD4.D5).6C2 = C42.61D10φ: C2/C1C2 ⊆ Out C2xD4.D5160(C2xD4.D5).6C2320,681
(C2xD4.D5).7C2 = C42.65D10φ: C2/C1C2 ⊆ Out C2xD4.D5160(C2xD4.D5).7C2320,687
(C2xD4.D5).8C2 = Dic5:3SD16φ: C2/C1C2 ⊆ Out C2xD4.D5160(C2xD4.D5).8C2320,789
(C2xD4.D5).9C2 = C40.31D4φ: C2/C1C2 ⊆ Out C2xD4.D5160(C2xD4.D5).9C2320,794
(C2xD4.D5).10C2 = C4xD4.D5φ: trivial image160(C2xD4.D5).10C2320,644

׿
x
:
Z
F
o
wr
Q
<