direct product, metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C2×D4.D5, D4.7D10, C10⋊2SD16, C20.16D4, C20.13C23, Dic10⋊6C22, C5⋊3(C2×SD16), (C2×D4).4D5, C5⋊2C8⋊8C22, (D4×C10).3C2, (C2×C4).48D10, C10.46(C2×D4), (C2×C10).40D4, C4.6(C5⋊D4), (C2×Dic10)⋊9C2, (C5×D4).7C22, C4.13(C22×D5), (C2×C20).31C22, C22.22(C5⋊D4), (C2×C5⋊2C8)⋊5C2, C2.10(C2×C5⋊D4), SmallGroup(160,154)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C2×D4.D5
G = < a,b,c,d,e | a2=b4=c2=d5=1, e2=b2, ab=ba, ac=ca, ad=da, ae=ea, cbc=ebe-1=b-1, bd=db, cd=dc, ece-1=bc, ede-1=d-1 >
Subgroups: 184 in 68 conjugacy classes, 33 normal (17 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C5, C8, C2×C4, C2×C4, D4, D4, Q8, C23, C10, C10, C10, C2×C8, SD16, C2×D4, C2×Q8, Dic5, C20, C2×C10, C2×C10, C2×SD16, C5⋊2C8, Dic10, Dic10, C2×Dic5, C2×C20, C5×D4, C5×D4, C22×C10, C2×C5⋊2C8, D4.D5, C2×Dic10, D4×C10, C2×D4.D5
Quotients: C1, C2, C22, D4, C23, D5, SD16, C2×D4, D10, C2×SD16, C5⋊D4, C22×D5, D4.D5, C2×C5⋊D4, C2×D4.D5
(1 21)(2 22)(3 23)(4 24)(5 25)(6 26)(7 27)(8 28)(9 29)(10 30)(11 36)(12 37)(13 38)(14 39)(15 40)(16 31)(17 32)(18 33)(19 34)(20 35)(41 61)(42 62)(43 63)(44 64)(45 65)(46 66)(47 67)(48 68)(49 69)(50 70)(51 76)(52 77)(53 78)(54 79)(55 80)(56 71)(57 72)(58 73)(59 74)(60 75)
(1 16 6 11)(2 17 7 12)(3 18 8 13)(4 19 9 14)(5 20 10 15)(21 31 26 36)(22 32 27 37)(23 33 28 38)(24 34 29 39)(25 35 30 40)(41 51 46 56)(42 52 47 57)(43 53 48 58)(44 54 49 59)(45 55 50 60)(61 76 66 71)(62 77 67 72)(63 78 68 73)(64 79 69 74)(65 80 70 75)
(1 11)(2 12)(3 13)(4 14)(5 15)(6 16)(7 17)(8 18)(9 19)(10 20)(21 36)(22 37)(23 38)(24 39)(25 40)(26 31)(27 32)(28 33)(29 34)(30 35)(41 46)(42 47)(43 48)(44 49)(45 50)(61 66)(62 67)(63 68)(64 69)(65 70)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45)(46 47 48 49 50)(51 52 53 54 55)(56 57 58 59 60)(61 62 63 64 65)(66 67 68 69 70)(71 72 73 74 75)(76 77 78 79 80)
(1 68 6 63)(2 67 7 62)(3 66 8 61)(4 70 9 65)(5 69 10 64)(11 73 16 78)(12 72 17 77)(13 71 18 76)(14 75 19 80)(15 74 20 79)(21 48 26 43)(22 47 27 42)(23 46 28 41)(24 50 29 45)(25 49 30 44)(31 53 36 58)(32 52 37 57)(33 51 38 56)(34 55 39 60)(35 54 40 59)
G:=sub<Sym(80)| (1,21)(2,22)(3,23)(4,24)(5,25)(6,26)(7,27)(8,28)(9,29)(10,30)(11,36)(12,37)(13,38)(14,39)(15,40)(16,31)(17,32)(18,33)(19,34)(20,35)(41,61)(42,62)(43,63)(44,64)(45,65)(46,66)(47,67)(48,68)(49,69)(50,70)(51,76)(52,77)(53,78)(54,79)(55,80)(56,71)(57,72)(58,73)(59,74)(60,75), (1,16,6,11)(2,17,7,12)(3,18,8,13)(4,19,9,14)(5,20,10,15)(21,31,26,36)(22,32,27,37)(23,33,28,38)(24,34,29,39)(25,35,30,40)(41,51,46,56)(42,52,47,57)(43,53,48,58)(44,54,49,59)(45,55,50,60)(61,76,66,71)(62,77,67,72)(63,78,68,73)(64,79,69,74)(65,80,70,75), (1,11)(2,12)(3,13)(4,14)(5,15)(6,16)(7,17)(8,18)(9,19)(10,20)(21,36)(22,37)(23,38)(24,39)(25,40)(26,31)(27,32)(28,33)(29,34)(30,35)(41,46)(42,47)(43,48)(44,49)(45,50)(61,66)(62,67)(63,68)(64,69)(65,70), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80), (1,68,6,63)(2,67,7,62)(3,66,8,61)(4,70,9,65)(5,69,10,64)(11,73,16,78)(12,72,17,77)(13,71,18,76)(14,75,19,80)(15,74,20,79)(21,48,26,43)(22,47,27,42)(23,46,28,41)(24,50,29,45)(25,49,30,44)(31,53,36,58)(32,52,37,57)(33,51,38,56)(34,55,39,60)(35,54,40,59)>;
G:=Group( (1,21)(2,22)(3,23)(4,24)(5,25)(6,26)(7,27)(8,28)(9,29)(10,30)(11,36)(12,37)(13,38)(14,39)(15,40)(16,31)(17,32)(18,33)(19,34)(20,35)(41,61)(42,62)(43,63)(44,64)(45,65)(46,66)(47,67)(48,68)(49,69)(50,70)(51,76)(52,77)(53,78)(54,79)(55,80)(56,71)(57,72)(58,73)(59,74)(60,75), (1,16,6,11)(2,17,7,12)(3,18,8,13)(4,19,9,14)(5,20,10,15)(21,31,26,36)(22,32,27,37)(23,33,28,38)(24,34,29,39)(25,35,30,40)(41,51,46,56)(42,52,47,57)(43,53,48,58)(44,54,49,59)(45,55,50,60)(61,76,66,71)(62,77,67,72)(63,78,68,73)(64,79,69,74)(65,80,70,75), (1,11)(2,12)(3,13)(4,14)(5,15)(6,16)(7,17)(8,18)(9,19)(10,20)(21,36)(22,37)(23,38)(24,39)(25,40)(26,31)(27,32)(28,33)(29,34)(30,35)(41,46)(42,47)(43,48)(44,49)(45,50)(61,66)(62,67)(63,68)(64,69)(65,70), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80), (1,68,6,63)(2,67,7,62)(3,66,8,61)(4,70,9,65)(5,69,10,64)(11,73,16,78)(12,72,17,77)(13,71,18,76)(14,75,19,80)(15,74,20,79)(21,48,26,43)(22,47,27,42)(23,46,28,41)(24,50,29,45)(25,49,30,44)(31,53,36,58)(32,52,37,57)(33,51,38,56)(34,55,39,60)(35,54,40,59) );
G=PermutationGroup([[(1,21),(2,22),(3,23),(4,24),(5,25),(6,26),(7,27),(8,28),(9,29),(10,30),(11,36),(12,37),(13,38),(14,39),(15,40),(16,31),(17,32),(18,33),(19,34),(20,35),(41,61),(42,62),(43,63),(44,64),(45,65),(46,66),(47,67),(48,68),(49,69),(50,70),(51,76),(52,77),(53,78),(54,79),(55,80),(56,71),(57,72),(58,73),(59,74),(60,75)], [(1,16,6,11),(2,17,7,12),(3,18,8,13),(4,19,9,14),(5,20,10,15),(21,31,26,36),(22,32,27,37),(23,33,28,38),(24,34,29,39),(25,35,30,40),(41,51,46,56),(42,52,47,57),(43,53,48,58),(44,54,49,59),(45,55,50,60),(61,76,66,71),(62,77,67,72),(63,78,68,73),(64,79,69,74),(65,80,70,75)], [(1,11),(2,12),(3,13),(4,14),(5,15),(6,16),(7,17),(8,18),(9,19),(10,20),(21,36),(22,37),(23,38),(24,39),(25,40),(26,31),(27,32),(28,33),(29,34),(30,35),(41,46),(42,47),(43,48),(44,49),(45,50),(61,66),(62,67),(63,68),(64,69),(65,70)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45),(46,47,48,49,50),(51,52,53,54,55),(56,57,58,59,60),(61,62,63,64,65),(66,67,68,69,70),(71,72,73,74,75),(76,77,78,79,80)], [(1,68,6,63),(2,67,7,62),(3,66,8,61),(4,70,9,65),(5,69,10,64),(11,73,16,78),(12,72,17,77),(13,71,18,76),(14,75,19,80),(15,74,20,79),(21,48,26,43),(22,47,27,42),(23,46,28,41),(24,50,29,45),(25,49,30,44),(31,53,36,58),(32,52,37,57),(33,51,38,56),(34,55,39,60),(35,54,40,59)]])
C2×D4.D5 is a maximal subgroup of
D20.2D4 D4.D5⋊5C4 Dic5⋊6SD16 Dic10⋊2D4 Dic10.D4 D20.8D4 D10⋊SD16 C5⋊2C8⋊D4 D4.D20 D4.1D20 C42.51D10 D4.2D20 D20⋊17D4 Dic10⋊17D4 C5⋊2C8⋊23D4 C4.(D4×D5) C42.61D10 C42.214D10 C42.65D10 C42.74D10 Dic10⋊9D4 C20⋊4SD16 (C2×D8).D5 C40⋊11D4 C40.22D4 Dic10⋊D4 Dic5⋊3SD16 C40.31D4 D10⋊8SD16 C40⋊15D4 M4(2).13D10 (C5×D4).31D4 (C5×D4).32D4 C2×D5×SD16 D8⋊6D10 D20.33C23
C2×D4.D5 is a maximal quotient of
C4⋊C4.231D10 C20.38SD16 D4.2D20 C4⋊D4.D5 Dic10⋊17D4 C5⋊2C8⋊23D4 C20.16D8 Dic10⋊9D4 C20⋊4SD16 C20.SD16 C20.11Q16 Dic10⋊6Q8 (C5×D4).31D4
34 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 4A | 4B | 4C | 4D | 5A | 5B | 8A | 8B | 8C | 8D | 10A | ··· | 10F | 10G | ··· | 10N | 20A | 20B | 20C | 20D |
order | 1 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 5 | 5 | 8 | 8 | 8 | 8 | 10 | ··· | 10 | 10 | ··· | 10 | 20 | 20 | 20 | 20 |
size | 1 | 1 | 1 | 1 | 4 | 4 | 2 | 2 | 20 | 20 | 2 | 2 | 10 | 10 | 10 | 10 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | 4 | 4 | 4 |
34 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 |
type | + | + | + | + | + | + | + | + | + | + | - | |||
image | C1 | C2 | C2 | C2 | C2 | D4 | D4 | D5 | SD16 | D10 | D10 | C5⋊D4 | C5⋊D4 | D4.D5 |
kernel | C2×D4.D5 | C2×C5⋊2C8 | D4.D5 | C2×Dic10 | D4×C10 | C20 | C2×C10 | C2×D4 | C10 | C2×C4 | D4 | C4 | C22 | C2 |
# reps | 1 | 1 | 4 | 1 | 1 | 1 | 1 | 2 | 4 | 2 | 4 | 4 | 4 | 4 |
Matrix representation of C2×D4.D5 ►in GL6(𝔽41)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 0 | 0 |
0 | 0 | 0 | 40 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 1 | 0 | 0 | 0 | 0 |
40 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 40 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 40 | 0 | 0 |
0 | 0 | 40 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 22 | 18 |
15 | 26 | 0 | 0 | 0 | 0 |
26 | 26 | 0 | 0 | 0 | 0 |
0 | 0 | 15 | 15 | 0 | 0 |
0 | 0 | 15 | 26 | 0 | 0 |
0 | 0 | 0 | 0 | 7 | 23 |
0 | 0 | 0 | 0 | 30 | 34 |
G:=sub<GL(6,GF(41))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,40,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,40,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,40,0,0,0,0,40,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,22,0,0,0,0,0,18],[15,26,0,0,0,0,26,26,0,0,0,0,0,0,15,15,0,0,0,0,15,26,0,0,0,0,0,0,7,30,0,0,0,0,23,34] >;
C2×D4.D5 in GAP, Magma, Sage, TeX
C_2\times D_4.D_5
% in TeX
G:=Group("C2xD4.D5");
// GroupNames label
G:=SmallGroup(160,154);
// by ID
G=gap.SmallGroup(160,154);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-2,-5,96,218,579,159,69,4613]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^4=c^2=d^5=1,e^2=b^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=e*b*e^-1=b^-1,b*d=d*b,c*d=d*c,e*c*e^-1=b*c,e*d*e^-1=d^-1>;
// generators/relations