metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C5⋊2C8⋊5D4, C5⋊4(C8⋊D4), C4⋊C4.62D10, C4⋊D4.7D5, C4.173(D4×D5), (C2×C20).74D4, (C2×D4).42D10, C20.151(C2×D4), C10.D8⋊37C2, D4⋊Dic5⋊18C2, C10.Q16⋊36C2, (C22×C10).88D4, C20.186(C4○D4), C4.62(D4⋊2D5), C20.48D4⋊25C2, C10.96(C4⋊D4), C10.92(C8⋊C22), (C2×C20).361C23, (D4×C10).58C22, (C22×C4).123D10, C23.25(C5⋊D4), C4⋊Dic5.145C22, C2.17(Dic5⋊D4), C2.13(D4.D10), C2.13(D4.9D10), C10.115(C8.C22), (C22×C20).165C22, (C2×Dic10).108C22, (C2×D4.D5)⋊11C2, (C5×C4⋊D4).6C2, (C2×C10).492(C2×D4), (C2×C4).52(C5⋊D4), (C2×C4.Dic5)⋊12C2, (C5×C4⋊C4).109C22, (C2×C4).461(C22×D5), C22.167(C2×C5⋊D4), (C2×C5⋊2C8).111C22, SmallGroup(320,669)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C22 — C22×C4 — C4⋊D4 |
Generators and relations for C4.(D4×D5)
G = < a,b,c,d,e | a4=b4=c2=d5=1, e2=a, bab-1=a-1, ac=ca, ad=da, ae=ea, cbc=b-1, bd=db, ebe-1=ab, cd=dc, ece-1=a2c, ede-1=d-1 >
Subgroups: 406 in 120 conjugacy classes, 41 normal (39 characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C8, C2×C4, C2×C4, D4, Q8, C23, C23, C10, C10, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, M4(2), SD16, C22×C4, C2×D4, C2×D4, C2×Q8, Dic5, C20, C20, C2×C10, C2×C10, D4⋊C4, Q8⋊C4, C2.D8, C4⋊D4, C22⋊Q8, C2×M4(2), C2×SD16, C5⋊2C8, C5⋊2C8, Dic10, C2×Dic5, C2×C20, C2×C20, C5×D4, C22×C10, C22×C10, C8⋊D4, C2×C5⋊2C8, C4.Dic5, C10.D4, C4⋊Dic5, D4.D5, C23.D5, C5×C22⋊C4, C5×C4⋊C4, C2×Dic10, C22×C20, D4×C10, D4×C10, C10.D8, C10.Q16, D4⋊Dic5, C2×C4.Dic5, C20.48D4, C2×D4.D5, C5×C4⋊D4, C4.(D4×D5)
Quotients: C1, C2, C22, D4, C23, D5, C2×D4, C4○D4, D10, C4⋊D4, C8⋊C22, C8.C22, C5⋊D4, C22×D5, C8⋊D4, D4×D5, D4⋊2D5, C2×C5⋊D4, D4.D10, Dic5⋊D4, D4.9D10, C4.(D4×D5)
(1 3 5 7)(2 4 6 8)(9 11 13 15)(10 12 14 16)(17 19 21 23)(18 20 22 24)(25 27 29 31)(26 28 30 32)(33 35 37 39)(34 36 38 40)(41 43 45 47)(42 44 46 48)(49 51 53 55)(50 52 54 56)(57 59 61 63)(58 60 62 64)(65 67 69 71)(66 68 70 72)(73 75 77 79)(74 76 78 80)(81 83 85 87)(82 84 86 88)(89 91 93 95)(90 92 94 96)(97 99 101 103)(98 100 102 104)(105 107 109 111)(106 108 110 112)(113 115 117 119)(114 116 118 120)(121 123 125 127)(122 124 126 128)(129 131 133 135)(130 132 134 136)(137 139 141 143)(138 140 142 144)(145 147 149 151)(146 148 150 152)(153 155 157 159)(154 156 158 160)
(1 25 46 66)(2 32 47 65)(3 31 48 72)(4 30 41 71)(5 29 42 70)(6 28 43 69)(7 27 44 68)(8 26 45 67)(9 153 76 98)(10 160 77 97)(11 159 78 104)(12 158 79 103)(13 157 80 102)(14 156 73 101)(15 155 74 100)(16 154 75 99)(17 87 55 57)(18 86 56 64)(19 85 49 63)(20 84 50 62)(21 83 51 61)(22 82 52 60)(23 81 53 59)(24 88 54 58)(33 140 92 110)(34 139 93 109)(35 138 94 108)(36 137 95 107)(37 144 96 106)(38 143 89 105)(39 142 90 112)(40 141 91 111)(113 127 145 133)(114 126 146 132)(115 125 147 131)(116 124 148 130)(117 123 149 129)(118 122 150 136)(119 121 151 135)(120 128 152 134)
(1 66)(2 71)(3 68)(4 65)(5 70)(6 67)(7 72)(8 69)(9 102)(10 99)(11 104)(12 101)(13 98)(14 103)(15 100)(16 97)(17 81)(18 86)(19 83)(20 88)(21 85)(22 82)(23 87)(24 84)(25 46)(26 43)(27 48)(28 45)(29 42)(30 47)(31 44)(32 41)(33 108)(34 105)(35 110)(36 107)(37 112)(38 109)(39 106)(40 111)(49 61)(50 58)(51 63)(52 60)(53 57)(54 62)(55 59)(56 64)(73 158)(74 155)(75 160)(76 157)(77 154)(78 159)(79 156)(80 153)(89 139)(90 144)(91 141)(92 138)(93 143)(94 140)(95 137)(96 142)(113 121)(114 126)(115 123)(116 128)(117 125)(118 122)(119 127)(120 124)(129 147)(130 152)(131 149)(132 146)(133 151)(134 148)(135 145)(136 150)
(1 82 15 95 132)(2 133 96 16 83)(3 84 9 89 134)(4 135 90 10 85)(5 86 11 91 136)(6 129 92 12 87)(7 88 13 93 130)(8 131 94 14 81)(17 69 149 140 103)(18 104 141 150 70)(19 71 151 142 97)(20 98 143 152 72)(21 65 145 144 99)(22 100 137 146 66)(23 67 147 138 101)(24 102 139 148 68)(25 52 155 107 114)(26 115 108 156 53)(27 54 157 109 116)(28 117 110 158 55)(29 56 159 111 118)(30 119 112 160 49)(31 50 153 105 120)(32 113 106 154 51)(33 79 57 43 123)(34 124 44 58 80)(35 73 59 45 125)(36 126 46 60 74)(37 75 61 47 127)(38 128 48 62 76)(39 77 63 41 121)(40 122 42 64 78)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)(129 130 131 132 133 134 135 136)(137 138 139 140 141 142 143 144)(145 146 147 148 149 150 151 152)(153 154 155 156 157 158 159 160)
G:=sub<Sym(160)| (1,3,5,7)(2,4,6,8)(9,11,13,15)(10,12,14,16)(17,19,21,23)(18,20,22,24)(25,27,29,31)(26,28,30,32)(33,35,37,39)(34,36,38,40)(41,43,45,47)(42,44,46,48)(49,51,53,55)(50,52,54,56)(57,59,61,63)(58,60,62,64)(65,67,69,71)(66,68,70,72)(73,75,77,79)(74,76,78,80)(81,83,85,87)(82,84,86,88)(89,91,93,95)(90,92,94,96)(97,99,101,103)(98,100,102,104)(105,107,109,111)(106,108,110,112)(113,115,117,119)(114,116,118,120)(121,123,125,127)(122,124,126,128)(129,131,133,135)(130,132,134,136)(137,139,141,143)(138,140,142,144)(145,147,149,151)(146,148,150,152)(153,155,157,159)(154,156,158,160), (1,25,46,66)(2,32,47,65)(3,31,48,72)(4,30,41,71)(5,29,42,70)(6,28,43,69)(7,27,44,68)(8,26,45,67)(9,153,76,98)(10,160,77,97)(11,159,78,104)(12,158,79,103)(13,157,80,102)(14,156,73,101)(15,155,74,100)(16,154,75,99)(17,87,55,57)(18,86,56,64)(19,85,49,63)(20,84,50,62)(21,83,51,61)(22,82,52,60)(23,81,53,59)(24,88,54,58)(33,140,92,110)(34,139,93,109)(35,138,94,108)(36,137,95,107)(37,144,96,106)(38,143,89,105)(39,142,90,112)(40,141,91,111)(113,127,145,133)(114,126,146,132)(115,125,147,131)(116,124,148,130)(117,123,149,129)(118,122,150,136)(119,121,151,135)(120,128,152,134), (1,66)(2,71)(3,68)(4,65)(5,70)(6,67)(7,72)(8,69)(9,102)(10,99)(11,104)(12,101)(13,98)(14,103)(15,100)(16,97)(17,81)(18,86)(19,83)(20,88)(21,85)(22,82)(23,87)(24,84)(25,46)(26,43)(27,48)(28,45)(29,42)(30,47)(31,44)(32,41)(33,108)(34,105)(35,110)(36,107)(37,112)(38,109)(39,106)(40,111)(49,61)(50,58)(51,63)(52,60)(53,57)(54,62)(55,59)(56,64)(73,158)(74,155)(75,160)(76,157)(77,154)(78,159)(79,156)(80,153)(89,139)(90,144)(91,141)(92,138)(93,143)(94,140)(95,137)(96,142)(113,121)(114,126)(115,123)(116,128)(117,125)(118,122)(119,127)(120,124)(129,147)(130,152)(131,149)(132,146)(133,151)(134,148)(135,145)(136,150), (1,82,15,95,132)(2,133,96,16,83)(3,84,9,89,134)(4,135,90,10,85)(5,86,11,91,136)(6,129,92,12,87)(7,88,13,93,130)(8,131,94,14,81)(17,69,149,140,103)(18,104,141,150,70)(19,71,151,142,97)(20,98,143,152,72)(21,65,145,144,99)(22,100,137,146,66)(23,67,147,138,101)(24,102,139,148,68)(25,52,155,107,114)(26,115,108,156,53)(27,54,157,109,116)(28,117,110,158,55)(29,56,159,111,118)(30,119,112,160,49)(31,50,153,105,120)(32,113,106,154,51)(33,79,57,43,123)(34,124,44,58,80)(35,73,59,45,125)(36,126,46,60,74)(37,75,61,47,127)(38,128,48,62,76)(39,77,63,41,121)(40,122,42,64,78), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152)(153,154,155,156,157,158,159,160)>;
G:=Group( (1,3,5,7)(2,4,6,8)(9,11,13,15)(10,12,14,16)(17,19,21,23)(18,20,22,24)(25,27,29,31)(26,28,30,32)(33,35,37,39)(34,36,38,40)(41,43,45,47)(42,44,46,48)(49,51,53,55)(50,52,54,56)(57,59,61,63)(58,60,62,64)(65,67,69,71)(66,68,70,72)(73,75,77,79)(74,76,78,80)(81,83,85,87)(82,84,86,88)(89,91,93,95)(90,92,94,96)(97,99,101,103)(98,100,102,104)(105,107,109,111)(106,108,110,112)(113,115,117,119)(114,116,118,120)(121,123,125,127)(122,124,126,128)(129,131,133,135)(130,132,134,136)(137,139,141,143)(138,140,142,144)(145,147,149,151)(146,148,150,152)(153,155,157,159)(154,156,158,160), (1,25,46,66)(2,32,47,65)(3,31,48,72)(4,30,41,71)(5,29,42,70)(6,28,43,69)(7,27,44,68)(8,26,45,67)(9,153,76,98)(10,160,77,97)(11,159,78,104)(12,158,79,103)(13,157,80,102)(14,156,73,101)(15,155,74,100)(16,154,75,99)(17,87,55,57)(18,86,56,64)(19,85,49,63)(20,84,50,62)(21,83,51,61)(22,82,52,60)(23,81,53,59)(24,88,54,58)(33,140,92,110)(34,139,93,109)(35,138,94,108)(36,137,95,107)(37,144,96,106)(38,143,89,105)(39,142,90,112)(40,141,91,111)(113,127,145,133)(114,126,146,132)(115,125,147,131)(116,124,148,130)(117,123,149,129)(118,122,150,136)(119,121,151,135)(120,128,152,134), (1,66)(2,71)(3,68)(4,65)(5,70)(6,67)(7,72)(8,69)(9,102)(10,99)(11,104)(12,101)(13,98)(14,103)(15,100)(16,97)(17,81)(18,86)(19,83)(20,88)(21,85)(22,82)(23,87)(24,84)(25,46)(26,43)(27,48)(28,45)(29,42)(30,47)(31,44)(32,41)(33,108)(34,105)(35,110)(36,107)(37,112)(38,109)(39,106)(40,111)(49,61)(50,58)(51,63)(52,60)(53,57)(54,62)(55,59)(56,64)(73,158)(74,155)(75,160)(76,157)(77,154)(78,159)(79,156)(80,153)(89,139)(90,144)(91,141)(92,138)(93,143)(94,140)(95,137)(96,142)(113,121)(114,126)(115,123)(116,128)(117,125)(118,122)(119,127)(120,124)(129,147)(130,152)(131,149)(132,146)(133,151)(134,148)(135,145)(136,150), (1,82,15,95,132)(2,133,96,16,83)(3,84,9,89,134)(4,135,90,10,85)(5,86,11,91,136)(6,129,92,12,87)(7,88,13,93,130)(8,131,94,14,81)(17,69,149,140,103)(18,104,141,150,70)(19,71,151,142,97)(20,98,143,152,72)(21,65,145,144,99)(22,100,137,146,66)(23,67,147,138,101)(24,102,139,148,68)(25,52,155,107,114)(26,115,108,156,53)(27,54,157,109,116)(28,117,110,158,55)(29,56,159,111,118)(30,119,112,160,49)(31,50,153,105,120)(32,113,106,154,51)(33,79,57,43,123)(34,124,44,58,80)(35,73,59,45,125)(36,126,46,60,74)(37,75,61,47,127)(38,128,48,62,76)(39,77,63,41,121)(40,122,42,64,78), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152)(153,154,155,156,157,158,159,160) );
G=PermutationGroup([[(1,3,5,7),(2,4,6,8),(9,11,13,15),(10,12,14,16),(17,19,21,23),(18,20,22,24),(25,27,29,31),(26,28,30,32),(33,35,37,39),(34,36,38,40),(41,43,45,47),(42,44,46,48),(49,51,53,55),(50,52,54,56),(57,59,61,63),(58,60,62,64),(65,67,69,71),(66,68,70,72),(73,75,77,79),(74,76,78,80),(81,83,85,87),(82,84,86,88),(89,91,93,95),(90,92,94,96),(97,99,101,103),(98,100,102,104),(105,107,109,111),(106,108,110,112),(113,115,117,119),(114,116,118,120),(121,123,125,127),(122,124,126,128),(129,131,133,135),(130,132,134,136),(137,139,141,143),(138,140,142,144),(145,147,149,151),(146,148,150,152),(153,155,157,159),(154,156,158,160)], [(1,25,46,66),(2,32,47,65),(3,31,48,72),(4,30,41,71),(5,29,42,70),(6,28,43,69),(7,27,44,68),(8,26,45,67),(9,153,76,98),(10,160,77,97),(11,159,78,104),(12,158,79,103),(13,157,80,102),(14,156,73,101),(15,155,74,100),(16,154,75,99),(17,87,55,57),(18,86,56,64),(19,85,49,63),(20,84,50,62),(21,83,51,61),(22,82,52,60),(23,81,53,59),(24,88,54,58),(33,140,92,110),(34,139,93,109),(35,138,94,108),(36,137,95,107),(37,144,96,106),(38,143,89,105),(39,142,90,112),(40,141,91,111),(113,127,145,133),(114,126,146,132),(115,125,147,131),(116,124,148,130),(117,123,149,129),(118,122,150,136),(119,121,151,135),(120,128,152,134)], [(1,66),(2,71),(3,68),(4,65),(5,70),(6,67),(7,72),(8,69),(9,102),(10,99),(11,104),(12,101),(13,98),(14,103),(15,100),(16,97),(17,81),(18,86),(19,83),(20,88),(21,85),(22,82),(23,87),(24,84),(25,46),(26,43),(27,48),(28,45),(29,42),(30,47),(31,44),(32,41),(33,108),(34,105),(35,110),(36,107),(37,112),(38,109),(39,106),(40,111),(49,61),(50,58),(51,63),(52,60),(53,57),(54,62),(55,59),(56,64),(73,158),(74,155),(75,160),(76,157),(77,154),(78,159),(79,156),(80,153),(89,139),(90,144),(91,141),(92,138),(93,143),(94,140),(95,137),(96,142),(113,121),(114,126),(115,123),(116,128),(117,125),(118,122),(119,127),(120,124),(129,147),(130,152),(131,149),(132,146),(133,151),(134,148),(135,145),(136,150)], [(1,82,15,95,132),(2,133,96,16,83),(3,84,9,89,134),(4,135,90,10,85),(5,86,11,91,136),(6,129,92,12,87),(7,88,13,93,130),(8,131,94,14,81),(17,69,149,140,103),(18,104,141,150,70),(19,71,151,142,97),(20,98,143,152,72),(21,65,145,144,99),(22,100,137,146,66),(23,67,147,138,101),(24,102,139,148,68),(25,52,155,107,114),(26,115,108,156,53),(27,54,157,109,116),(28,117,110,158,55),(29,56,159,111,118),(30,119,112,160,49),(31,50,153,105,120),(32,113,106,154,51),(33,79,57,43,123),(34,124,44,58,80),(35,73,59,45,125),(36,126,46,60,74),(37,75,61,47,127),(38,128,48,62,76),(39,77,63,41,121),(40,122,42,64,78)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128),(129,130,131,132,133,134,135,136),(137,138,139,140,141,142,143,144),(145,146,147,148,149,150,151,152),(153,154,155,156,157,158,159,160)]])
44 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 4A | 4B | 4C | 4D | 4E | 4F | 5A | 5B | 8A | 8B | 8C | 8D | 10A | ··· | 10F | 10G | 10H | 10I | 10J | 10K | 10L | 10M | 10N | 20A | ··· | 20H | 20I | 20J | 20K | 20L |
order | 1 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 5 | 5 | 8 | 8 | 8 | 8 | 10 | ··· | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 20 | ··· | 20 | 20 | 20 | 20 | 20 |
size | 1 | 1 | 1 | 1 | 4 | 8 | 2 | 2 | 4 | 8 | 40 | 40 | 2 | 2 | 20 | 20 | 20 | 20 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 4 | ··· | 4 | 8 | 8 | 8 | 8 |
44 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | - | + | - | - | ||||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | D4 | D4 | D4 | D5 | C4○D4 | D10 | D10 | D10 | C5⋊D4 | C5⋊D4 | C8⋊C22 | C8.C22 | D4×D5 | D4⋊2D5 | D4.D10 | D4.9D10 |
kernel | C4.(D4×D5) | C10.D8 | C10.Q16 | D4⋊Dic5 | C2×C4.Dic5 | C20.48D4 | C2×D4.D5 | C5×C4⋊D4 | C5⋊2C8 | C2×C20 | C22×C10 | C4⋊D4 | C20 | C4⋊C4 | C22×C4 | C2×D4 | C2×C4 | C23 | C10 | C10 | C4 | C4 | C2 | C2 |
# reps | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 1 | 1 | 2 | 2 | 4 | 4 |
Matrix representation of C4.(D4×D5) ►in GL8(𝔽41)
40 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 40 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 40 | 0 | 0 |
1 | 0 | 9 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
18 | 0 | 40 | 0 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 2 | 28 |
0 | 0 | 0 | 0 | 0 | 0 | 13 | 39 |
0 | 0 | 0 | 0 | 2 | 28 | 0 | 0 |
0 | 0 | 0 | 0 | 13 | 39 | 0 | 0 |
1 | 0 | 9 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 39 | 13 |
0 | 0 | 0 | 0 | 0 | 0 | 28 | 2 |
0 | 0 | 0 | 0 | 2 | 28 | 0 | 0 |
0 | 0 | 0 | 0 | 13 | 39 | 0 | 0 |
37 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
23 | 10 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 37 | 0 | 0 | 0 | 0 | 0 |
23 | 0 | 2 | 10 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 40 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 6 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 40 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 6 |
21 | 0 | 25 | 11 | 0 | 0 | 0 | 0 |
12 | 0 | 26 | 20 | 0 | 0 | 0 | 0 |
0 | 24 | 20 | 17 | 0 | 0 | 0 | 0 |
12 | 20 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 17 | 25 | 24 |
0 | 0 | 0 | 0 | 3 | 25 | 38 | 16 |
0 | 0 | 0 | 0 | 16 | 17 | 16 | 17 |
0 | 0 | 0 | 0 | 3 | 25 | 3 | 25 |
G:=sub<GL(8,GF(41))| [40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0],[1,0,18,0,0,0,0,0,0,0,0,40,0,0,0,0,9,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,2,13,0,0,0,0,0,0,28,39,0,0,0,0,2,13,0,0,0,0,0,0,28,39,0,0],[1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,9,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,2,13,0,0,0,0,0,0,28,39,0,0,0,0,39,28,0,0,0,0,0,0,13,2,0,0],[37,23,0,23,0,0,0,0,0,10,0,0,0,0,0,0,0,0,37,2,0,0,0,0,0,0,0,10,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,40,6,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,40,6],[21,12,0,12,0,0,0,0,0,0,24,20,0,0,0,0,25,26,20,0,0,0,0,0,11,20,17,0,0,0,0,0,0,0,0,0,16,3,16,3,0,0,0,0,17,25,17,25,0,0,0,0,25,38,16,3,0,0,0,0,24,16,17,25] >;
C4.(D4×D5) in GAP, Magma, Sage, TeX
C_4.(D_4\times D_5)
% in TeX
G:=Group("C4.(D4xD5)");
// GroupNames label
G:=SmallGroup(320,669);
// by ID
G=gap.SmallGroup(320,669);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,224,253,254,555,1123,297,136,12550]);
// Polycyclic
G:=Group<a,b,c,d,e|a^4=b^4=c^2=d^5=1,e^2=a,b*a*b^-1=a^-1,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=b^-1,b*d=d*b,e*b*e^-1=a*b,c*d=d*c,e*c*e^-1=a^2*c,e*d*e^-1=d^-1>;
// generators/relations