Copied to
clipboard

G = Dic1017D4order 320 = 26·5

5th semidirect product of Dic10 and D4 acting via D4/C22=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: Dic1017D4, C4⋊C4.60D10, C53(Q8⋊D4), (C2×C10)⋊3SD16, C4⋊D4.5D5, C4.100(D4×D5), (C2×C20).73D4, (C2×D4).40D10, C20.149(C2×D4), C10.46C22≀C2, C10.Q1634C2, C222(D4.D5), C10.55(C2×SD16), (C22×C10).86D4, C20.55D412C2, (C2×C20).359C23, (D4×C10).56C22, (C22×C4).122D10, C23.59(C5⋊D4), C2.14(C23⋊D10), (C22×Dic10)⋊13C2, C2.12(D4.9D10), C10.114(C8.C22), (C22×C20).163C22, (C2×Dic10).277C22, (C2×D4.D5)⋊9C2, C2.9(C2×D4.D5), (C5×C4⋊D4).4C2, (C2×C10).490(C2×D4), (C2×C4).51(C5⋊D4), (C5×C4⋊C4).107C22, (C2×C4).459(C22×D5), C22.165(C2×C5⋊D4), (C2×C52C8).110C22, SmallGroup(320,667)

Series: Derived Chief Lower central Upper central

C1C2×C20 — Dic1017D4
C1C5C10C20C2×C20C2×Dic10C22×Dic10 — Dic1017D4
C5C10C2×C20 — Dic1017D4
C1C22C22×C4C4⋊D4

Generators and relations for Dic1017D4
 G = < a,b,c,d | a20=c4=d2=1, b2=a10, bab-1=a-1, cac-1=a11, ad=da, cbc-1=a5b, bd=db, dcd=c-1 >

Subgroups: 574 in 158 conjugacy classes, 47 normal (27 characteristic)
C1, C2, C2, C4, C4, C22, C22, C22, C5, C8, C2×C4, C2×C4, D4, Q8, C23, C23, C10, C10, C22⋊C4, C4⋊C4, C2×C8, SD16, C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, Dic5, C20, C20, C2×C10, C2×C10, C2×C10, C22⋊C8, Q8⋊C4, C4⋊D4, C2×SD16, C22×Q8, C52C8, Dic10, Dic10, C2×Dic5, C2×C20, C2×C20, C5×D4, C22×C10, C22×C10, Q8⋊D4, C2×C52C8, D4.D5, C5×C22⋊C4, C5×C4⋊C4, C2×Dic10, C2×Dic10, C22×Dic5, C22×C20, D4×C10, D4×C10, C10.Q16, C20.55D4, C2×D4.D5, C5×C4⋊D4, C22×Dic10, Dic1017D4
Quotients: C1, C2, C22, D4, C23, D5, SD16, C2×D4, D10, C22≀C2, C2×SD16, C8.C22, C5⋊D4, C22×D5, Q8⋊D4, D4.D5, D4×D5, C2×C5⋊D4, C2×D4.D5, C23⋊D10, D4.9D10, Dic1017D4

Smallest permutation representation of Dic1017D4
On 160 points
Generators in S160
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 35 11 25)(2 34 12 24)(3 33 13 23)(4 32 14 22)(5 31 15 21)(6 30 16 40)(7 29 17 39)(8 28 18 38)(9 27 19 37)(10 26 20 36)(41 129 51 139)(42 128 52 138)(43 127 53 137)(44 126 54 136)(45 125 55 135)(46 124 56 134)(47 123 57 133)(48 122 58 132)(49 121 59 131)(50 140 60 130)(61 148 71 158)(62 147 72 157)(63 146 73 156)(64 145 74 155)(65 144 75 154)(66 143 76 153)(67 142 77 152)(68 141 78 151)(69 160 79 150)(70 159 80 149)(81 109 91 119)(82 108 92 118)(83 107 93 117)(84 106 94 116)(85 105 95 115)(86 104 96 114)(87 103 97 113)(88 102 98 112)(89 101 99 111)(90 120 100 110)
(1 103 137 156)(2 114 138 147)(3 105 139 158)(4 116 140 149)(5 107 121 160)(6 118 122 151)(7 109 123 142)(8 120 124 153)(9 111 125 144)(10 102 126 155)(11 113 127 146)(12 104 128 157)(13 115 129 148)(14 106 130 159)(15 117 131 150)(16 108 132 141)(17 119 133 152)(18 110 134 143)(19 101 135 154)(20 112 136 145)(21 98 49 64)(22 89 50 75)(23 100 51 66)(24 91 52 77)(25 82 53 68)(26 93 54 79)(27 84 55 70)(28 95 56 61)(29 86 57 72)(30 97 58 63)(31 88 59 74)(32 99 60 65)(33 90 41 76)(34 81 42 67)(35 92 43 78)(36 83 44 69)(37 94 45 80)(38 85 46 71)(39 96 47 62)(40 87 48 73)
(1 156)(2 157)(3 158)(4 159)(5 160)(6 141)(7 142)(8 143)(9 144)(10 145)(11 146)(12 147)(13 148)(14 149)(15 150)(16 151)(17 152)(18 153)(19 154)(20 155)(21 69)(22 70)(23 71)(24 72)(25 73)(26 74)(27 75)(28 76)(29 77)(30 78)(31 79)(32 80)(33 61)(34 62)(35 63)(36 64)(37 65)(38 66)(39 67)(40 68)(41 95)(42 96)(43 97)(44 98)(45 99)(46 100)(47 81)(48 82)(49 83)(50 84)(51 85)(52 86)(53 87)(54 88)(55 89)(56 90)(57 91)(58 92)(59 93)(60 94)(101 135)(102 136)(103 137)(104 138)(105 139)(106 140)(107 121)(108 122)(109 123)(110 124)(111 125)(112 126)(113 127)(114 128)(115 129)(116 130)(117 131)(118 132)(119 133)(120 134)

G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,35,11,25)(2,34,12,24)(3,33,13,23)(4,32,14,22)(5,31,15,21)(6,30,16,40)(7,29,17,39)(8,28,18,38)(9,27,19,37)(10,26,20,36)(41,129,51,139)(42,128,52,138)(43,127,53,137)(44,126,54,136)(45,125,55,135)(46,124,56,134)(47,123,57,133)(48,122,58,132)(49,121,59,131)(50,140,60,130)(61,148,71,158)(62,147,72,157)(63,146,73,156)(64,145,74,155)(65,144,75,154)(66,143,76,153)(67,142,77,152)(68,141,78,151)(69,160,79,150)(70,159,80,149)(81,109,91,119)(82,108,92,118)(83,107,93,117)(84,106,94,116)(85,105,95,115)(86,104,96,114)(87,103,97,113)(88,102,98,112)(89,101,99,111)(90,120,100,110), (1,103,137,156)(2,114,138,147)(3,105,139,158)(4,116,140,149)(5,107,121,160)(6,118,122,151)(7,109,123,142)(8,120,124,153)(9,111,125,144)(10,102,126,155)(11,113,127,146)(12,104,128,157)(13,115,129,148)(14,106,130,159)(15,117,131,150)(16,108,132,141)(17,119,133,152)(18,110,134,143)(19,101,135,154)(20,112,136,145)(21,98,49,64)(22,89,50,75)(23,100,51,66)(24,91,52,77)(25,82,53,68)(26,93,54,79)(27,84,55,70)(28,95,56,61)(29,86,57,72)(30,97,58,63)(31,88,59,74)(32,99,60,65)(33,90,41,76)(34,81,42,67)(35,92,43,78)(36,83,44,69)(37,94,45,80)(38,85,46,71)(39,96,47,62)(40,87,48,73), (1,156)(2,157)(3,158)(4,159)(5,160)(6,141)(7,142)(8,143)(9,144)(10,145)(11,146)(12,147)(13,148)(14,149)(15,150)(16,151)(17,152)(18,153)(19,154)(20,155)(21,69)(22,70)(23,71)(24,72)(25,73)(26,74)(27,75)(28,76)(29,77)(30,78)(31,79)(32,80)(33,61)(34,62)(35,63)(36,64)(37,65)(38,66)(39,67)(40,68)(41,95)(42,96)(43,97)(44,98)(45,99)(46,100)(47,81)(48,82)(49,83)(50,84)(51,85)(52,86)(53,87)(54,88)(55,89)(56,90)(57,91)(58,92)(59,93)(60,94)(101,135)(102,136)(103,137)(104,138)(105,139)(106,140)(107,121)(108,122)(109,123)(110,124)(111,125)(112,126)(113,127)(114,128)(115,129)(116,130)(117,131)(118,132)(119,133)(120,134)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,35,11,25)(2,34,12,24)(3,33,13,23)(4,32,14,22)(5,31,15,21)(6,30,16,40)(7,29,17,39)(8,28,18,38)(9,27,19,37)(10,26,20,36)(41,129,51,139)(42,128,52,138)(43,127,53,137)(44,126,54,136)(45,125,55,135)(46,124,56,134)(47,123,57,133)(48,122,58,132)(49,121,59,131)(50,140,60,130)(61,148,71,158)(62,147,72,157)(63,146,73,156)(64,145,74,155)(65,144,75,154)(66,143,76,153)(67,142,77,152)(68,141,78,151)(69,160,79,150)(70,159,80,149)(81,109,91,119)(82,108,92,118)(83,107,93,117)(84,106,94,116)(85,105,95,115)(86,104,96,114)(87,103,97,113)(88,102,98,112)(89,101,99,111)(90,120,100,110), (1,103,137,156)(2,114,138,147)(3,105,139,158)(4,116,140,149)(5,107,121,160)(6,118,122,151)(7,109,123,142)(8,120,124,153)(9,111,125,144)(10,102,126,155)(11,113,127,146)(12,104,128,157)(13,115,129,148)(14,106,130,159)(15,117,131,150)(16,108,132,141)(17,119,133,152)(18,110,134,143)(19,101,135,154)(20,112,136,145)(21,98,49,64)(22,89,50,75)(23,100,51,66)(24,91,52,77)(25,82,53,68)(26,93,54,79)(27,84,55,70)(28,95,56,61)(29,86,57,72)(30,97,58,63)(31,88,59,74)(32,99,60,65)(33,90,41,76)(34,81,42,67)(35,92,43,78)(36,83,44,69)(37,94,45,80)(38,85,46,71)(39,96,47,62)(40,87,48,73), (1,156)(2,157)(3,158)(4,159)(5,160)(6,141)(7,142)(8,143)(9,144)(10,145)(11,146)(12,147)(13,148)(14,149)(15,150)(16,151)(17,152)(18,153)(19,154)(20,155)(21,69)(22,70)(23,71)(24,72)(25,73)(26,74)(27,75)(28,76)(29,77)(30,78)(31,79)(32,80)(33,61)(34,62)(35,63)(36,64)(37,65)(38,66)(39,67)(40,68)(41,95)(42,96)(43,97)(44,98)(45,99)(46,100)(47,81)(48,82)(49,83)(50,84)(51,85)(52,86)(53,87)(54,88)(55,89)(56,90)(57,91)(58,92)(59,93)(60,94)(101,135)(102,136)(103,137)(104,138)(105,139)(106,140)(107,121)(108,122)(109,123)(110,124)(111,125)(112,126)(113,127)(114,128)(115,129)(116,130)(117,131)(118,132)(119,133)(120,134) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,35,11,25),(2,34,12,24),(3,33,13,23),(4,32,14,22),(5,31,15,21),(6,30,16,40),(7,29,17,39),(8,28,18,38),(9,27,19,37),(10,26,20,36),(41,129,51,139),(42,128,52,138),(43,127,53,137),(44,126,54,136),(45,125,55,135),(46,124,56,134),(47,123,57,133),(48,122,58,132),(49,121,59,131),(50,140,60,130),(61,148,71,158),(62,147,72,157),(63,146,73,156),(64,145,74,155),(65,144,75,154),(66,143,76,153),(67,142,77,152),(68,141,78,151),(69,160,79,150),(70,159,80,149),(81,109,91,119),(82,108,92,118),(83,107,93,117),(84,106,94,116),(85,105,95,115),(86,104,96,114),(87,103,97,113),(88,102,98,112),(89,101,99,111),(90,120,100,110)], [(1,103,137,156),(2,114,138,147),(3,105,139,158),(4,116,140,149),(5,107,121,160),(6,118,122,151),(7,109,123,142),(8,120,124,153),(9,111,125,144),(10,102,126,155),(11,113,127,146),(12,104,128,157),(13,115,129,148),(14,106,130,159),(15,117,131,150),(16,108,132,141),(17,119,133,152),(18,110,134,143),(19,101,135,154),(20,112,136,145),(21,98,49,64),(22,89,50,75),(23,100,51,66),(24,91,52,77),(25,82,53,68),(26,93,54,79),(27,84,55,70),(28,95,56,61),(29,86,57,72),(30,97,58,63),(31,88,59,74),(32,99,60,65),(33,90,41,76),(34,81,42,67),(35,92,43,78),(36,83,44,69),(37,94,45,80),(38,85,46,71),(39,96,47,62),(40,87,48,73)], [(1,156),(2,157),(3,158),(4,159),(5,160),(6,141),(7,142),(8,143),(9,144),(10,145),(11,146),(12,147),(13,148),(14,149),(15,150),(16,151),(17,152),(18,153),(19,154),(20,155),(21,69),(22,70),(23,71),(24,72),(25,73),(26,74),(27,75),(28,76),(29,77),(30,78),(31,79),(32,80),(33,61),(34,62),(35,63),(36,64),(37,65),(38,66),(39,67),(40,68),(41,95),(42,96),(43,97),(44,98),(45,99),(46,100),(47,81),(48,82),(49,83),(50,84),(51,85),(52,86),(53,87),(54,88),(55,89),(56,90),(57,91),(58,92),(59,93),(60,94),(101,135),(102,136),(103,137),(104,138),(105,139),(106,140),(107,121),(108,122),(109,123),(110,124),(111,125),(112,126),(113,127),(114,128),(115,129),(116,130),(117,131),(118,132),(119,133),(120,134)]])

47 conjugacy classes

class 1 2A2B2C2D2E2F4A4B4C4D4E4F4G4H5A5B8A8B8C8D10A···10F10G10H10I10J10K10L10M10N20A···20H20I20J20K20L
order12222224444444455888810···10101010101010101020···2020202020
size111122822482020202022202020202···2444488884···48888

47 irreducible representations

dim11111122222222224444
type+++++++++++++-+--
imageC1C2C2C2C2C2D4D4D4D5SD16D10D10D10C5⋊D4C5⋊D4C8.C22D4×D5D4.D5D4.9D10
kernelDic1017D4C10.Q16C20.55D4C2×D4.D5C5×C4⋊D4C22×Dic10Dic10C2×C20C22×C10C4⋊D4C2×C10C4⋊C4C22×C4C2×D4C2×C4C23C10C4C22C2
# reps12121141124222441444

Matrix representation of Dic1017D4 in GL6(𝔽41)

40320000
2310000
0040100
0053500
000010
000001
,
11290000
17300000
0038600
0026300
000010
000001
,
100000
18400000
001000
000100
00004039
000011
,
100000
010000
001000
000100
00004039
000001

G:=sub<GL(6,GF(41))| [40,23,0,0,0,0,32,1,0,0,0,0,0,0,40,5,0,0,0,0,1,35,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[11,17,0,0,0,0,29,30,0,0,0,0,0,0,38,26,0,0,0,0,6,3,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,18,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,1,0,0,0,0,39,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,39,1] >;

Dic1017D4 in GAP, Magma, Sage, TeX

{\rm Dic}_{10}\rtimes_{17}D_4
% in TeX

G:=Group("Dic10:17D4");
// GroupNames label

G:=SmallGroup(320,667);
// by ID

G=gap.SmallGroup(320,667);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,224,254,219,1123,297,136,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^20=c^4=d^2=1,b^2=a^10,b*a*b^-1=a^-1,c*a*c^-1=a^11,a*d=d*a,c*b*c^-1=a^5*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽