Copied to
clipboard

G = C52C823D4order 320 = 26·5

5th semidirect product of C52C8 and D4 acting via D4/C22=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C52C823D4, C54(C88D4), C4⋊C4.61D10, (C2×C10)⋊4SD16, C4⋊D4.6D5, C4.172(D4×D5), (C2×D4).41D10, C20.150(C2×D4), (C2×C20).264D4, C10.98(C4○D8), C10.Q1635C2, D4⋊Dic517C2, C221(D4.D5), C20.Q836C2, C10.56(C2×SD16), (C22×C10).87D4, C20.185(C4○D4), C20.48D424C2, C4.61(D42D5), C10.95(C4⋊D4), (C2×C20).360C23, (D4×C10).57C22, (C22×C4).341D10, C23.40(C5⋊D4), C4⋊Dic5.144C22, C2.16(Dic5⋊D4), C2.17(D4.8D10), (C22×C20).164C22, (C2×Dic10).107C22, (C2×D4.D5)⋊10C2, (C22×C52C8)⋊4C2, (C5×C4⋊D4).5C2, C2.10(C2×D4.D5), (C2×C10).491(C2×D4), (C2×C4).106(C5⋊D4), (C5×C4⋊C4).108C22, (C2×C4).460(C22×D5), C22.166(C2×C5⋊D4), (C2×C52C8).257C22, SmallGroup(320,668)

Series: Derived Chief Lower central Upper central

C1C2×C20 — C52C823D4
C1C5C10C20C2×C20C2×Dic10C20.48D4 — C52C823D4
C5C10C2×C20 — C52C823D4
C1C22C22×C4C4⋊D4

Generators and relations for C52C823D4
 G = < a,b,c,d | a5=b8=c4=d2=1, bab-1=a-1, ac=ca, ad=da, cbc-1=b3, bd=db, dcd=c-1 >

Subgroups: 406 in 124 conjugacy classes, 45 normal (39 characteristic)
C1, C2, C2, C4, C4, C22, C22, C22, C5, C8, C2×C4, C2×C4, D4, Q8, C23, C23, C10, C10, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, SD16, C22×C4, C2×D4, C2×D4, C2×Q8, Dic5, C20, C20, C2×C10, C2×C10, C2×C10, D4⋊C4, Q8⋊C4, C4.Q8, C4⋊D4, C22⋊Q8, C22×C8, C2×SD16, C52C8, C52C8, Dic10, C2×Dic5, C2×C20, C2×C20, C5×D4, C22×C10, C22×C10, C88D4, C2×C52C8, C2×C52C8, C10.D4, C4⋊Dic5, D4.D5, C23.D5, C5×C22⋊C4, C5×C4⋊C4, C2×Dic10, C22×C20, D4×C10, D4×C10, C20.Q8, C10.Q16, D4⋊Dic5, C22×C52C8, C20.48D4, C2×D4.D5, C5×C4⋊D4, C52C823D4
Quotients: C1, C2, C22, D4, C23, D5, SD16, C2×D4, C4○D4, D10, C4⋊D4, C2×SD16, C4○D8, C5⋊D4, C22×D5, C88D4, D4.D5, D4×D5, D42D5, C2×C5⋊D4, C2×D4.D5, Dic5⋊D4, D4.8D10, C52C823D4

Smallest permutation representation of C52C823D4
On 160 points
Generators in S160
(1 74 38 47 155)(2 156 48 39 75)(3 76 40 41 157)(4 158 42 33 77)(5 78 34 43 159)(6 160 44 35 79)(7 80 36 45 153)(8 154 46 37 73)(9 85 103 144 62)(10 63 137 104 86)(11 87 97 138 64)(12 57 139 98 88)(13 81 99 140 58)(14 59 141 100 82)(15 83 101 142 60)(16 61 143 102 84)(17 93 111 131 70)(18 71 132 112 94)(19 95 105 133 72)(20 65 134 106 96)(21 89 107 135 66)(22 67 136 108 90)(23 91 109 129 68)(24 69 130 110 92)(25 54 151 121 113)(26 114 122 152 55)(27 56 145 123 115)(28 116 124 146 49)(29 50 147 125 117)(30 118 126 148 51)(31 52 149 127 119)(32 120 128 150 53)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)(129 130 131 132 133 134 135 136)(137 138 139 140 141 142 143 144)(145 146 147 148 149 150 151 152)(153 154 155 156 157 158 159 160)
(1 96 88 151)(2 91 81 146)(3 94 82 149)(4 89 83 152)(5 92 84 147)(6 95 85 150)(7 90 86 145)(8 93 87 148)(9 128 79 19)(10 123 80 22)(11 126 73 17)(12 121 74 20)(13 124 75 23)(14 127 76 18)(15 122 77 21)(16 125 78 24)(25 47 134 139)(26 42 135 142)(27 45 136 137)(28 48 129 140)(29 43 130 143)(30 46 131 138)(31 41 132 141)(32 44 133 144)(33 66 60 114)(34 69 61 117)(35 72 62 120)(36 67 63 115)(37 70 64 118)(38 65 57 113)(39 68 58 116)(40 71 59 119)(49 156 109 99)(50 159 110 102)(51 154 111 97)(52 157 112 100)(53 160 105 103)(54 155 106 98)(55 158 107 101)(56 153 108 104)
(1 151)(2 152)(3 145)(4 146)(5 147)(6 148)(7 149)(8 150)(9 17)(10 18)(11 19)(12 20)(13 21)(14 22)(15 23)(16 24)(25 47)(26 48)(27 41)(28 42)(29 43)(30 44)(31 45)(32 46)(33 116)(34 117)(35 118)(36 119)(37 120)(38 113)(39 114)(40 115)(49 158)(50 159)(51 160)(52 153)(53 154)(54 155)(55 156)(56 157)(57 65)(58 66)(59 67)(60 68)(61 69)(62 70)(63 71)(64 72)(73 128)(74 121)(75 122)(76 123)(77 124)(78 125)(79 126)(80 127)(81 89)(82 90)(83 91)(84 92)(85 93)(86 94)(87 95)(88 96)(97 105)(98 106)(99 107)(100 108)(101 109)(102 110)(103 111)(104 112)(129 142)(130 143)(131 144)(132 137)(133 138)(134 139)(135 140)(136 141)

G:=sub<Sym(160)| (1,74,38,47,155)(2,156,48,39,75)(3,76,40,41,157)(4,158,42,33,77)(5,78,34,43,159)(6,160,44,35,79)(7,80,36,45,153)(8,154,46,37,73)(9,85,103,144,62)(10,63,137,104,86)(11,87,97,138,64)(12,57,139,98,88)(13,81,99,140,58)(14,59,141,100,82)(15,83,101,142,60)(16,61,143,102,84)(17,93,111,131,70)(18,71,132,112,94)(19,95,105,133,72)(20,65,134,106,96)(21,89,107,135,66)(22,67,136,108,90)(23,91,109,129,68)(24,69,130,110,92)(25,54,151,121,113)(26,114,122,152,55)(27,56,145,123,115)(28,116,124,146,49)(29,50,147,125,117)(30,118,126,148,51)(31,52,149,127,119)(32,120,128,150,53), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152)(153,154,155,156,157,158,159,160), (1,96,88,151)(2,91,81,146)(3,94,82,149)(4,89,83,152)(5,92,84,147)(6,95,85,150)(7,90,86,145)(8,93,87,148)(9,128,79,19)(10,123,80,22)(11,126,73,17)(12,121,74,20)(13,124,75,23)(14,127,76,18)(15,122,77,21)(16,125,78,24)(25,47,134,139)(26,42,135,142)(27,45,136,137)(28,48,129,140)(29,43,130,143)(30,46,131,138)(31,41,132,141)(32,44,133,144)(33,66,60,114)(34,69,61,117)(35,72,62,120)(36,67,63,115)(37,70,64,118)(38,65,57,113)(39,68,58,116)(40,71,59,119)(49,156,109,99)(50,159,110,102)(51,154,111,97)(52,157,112,100)(53,160,105,103)(54,155,106,98)(55,158,107,101)(56,153,108,104), (1,151)(2,152)(3,145)(4,146)(5,147)(6,148)(7,149)(8,150)(9,17)(10,18)(11,19)(12,20)(13,21)(14,22)(15,23)(16,24)(25,47)(26,48)(27,41)(28,42)(29,43)(30,44)(31,45)(32,46)(33,116)(34,117)(35,118)(36,119)(37,120)(38,113)(39,114)(40,115)(49,158)(50,159)(51,160)(52,153)(53,154)(54,155)(55,156)(56,157)(57,65)(58,66)(59,67)(60,68)(61,69)(62,70)(63,71)(64,72)(73,128)(74,121)(75,122)(76,123)(77,124)(78,125)(79,126)(80,127)(81,89)(82,90)(83,91)(84,92)(85,93)(86,94)(87,95)(88,96)(97,105)(98,106)(99,107)(100,108)(101,109)(102,110)(103,111)(104,112)(129,142)(130,143)(131,144)(132,137)(133,138)(134,139)(135,140)(136,141)>;

G:=Group( (1,74,38,47,155)(2,156,48,39,75)(3,76,40,41,157)(4,158,42,33,77)(5,78,34,43,159)(6,160,44,35,79)(7,80,36,45,153)(8,154,46,37,73)(9,85,103,144,62)(10,63,137,104,86)(11,87,97,138,64)(12,57,139,98,88)(13,81,99,140,58)(14,59,141,100,82)(15,83,101,142,60)(16,61,143,102,84)(17,93,111,131,70)(18,71,132,112,94)(19,95,105,133,72)(20,65,134,106,96)(21,89,107,135,66)(22,67,136,108,90)(23,91,109,129,68)(24,69,130,110,92)(25,54,151,121,113)(26,114,122,152,55)(27,56,145,123,115)(28,116,124,146,49)(29,50,147,125,117)(30,118,126,148,51)(31,52,149,127,119)(32,120,128,150,53), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152)(153,154,155,156,157,158,159,160), (1,96,88,151)(2,91,81,146)(3,94,82,149)(4,89,83,152)(5,92,84,147)(6,95,85,150)(7,90,86,145)(8,93,87,148)(9,128,79,19)(10,123,80,22)(11,126,73,17)(12,121,74,20)(13,124,75,23)(14,127,76,18)(15,122,77,21)(16,125,78,24)(25,47,134,139)(26,42,135,142)(27,45,136,137)(28,48,129,140)(29,43,130,143)(30,46,131,138)(31,41,132,141)(32,44,133,144)(33,66,60,114)(34,69,61,117)(35,72,62,120)(36,67,63,115)(37,70,64,118)(38,65,57,113)(39,68,58,116)(40,71,59,119)(49,156,109,99)(50,159,110,102)(51,154,111,97)(52,157,112,100)(53,160,105,103)(54,155,106,98)(55,158,107,101)(56,153,108,104), (1,151)(2,152)(3,145)(4,146)(5,147)(6,148)(7,149)(8,150)(9,17)(10,18)(11,19)(12,20)(13,21)(14,22)(15,23)(16,24)(25,47)(26,48)(27,41)(28,42)(29,43)(30,44)(31,45)(32,46)(33,116)(34,117)(35,118)(36,119)(37,120)(38,113)(39,114)(40,115)(49,158)(50,159)(51,160)(52,153)(53,154)(54,155)(55,156)(56,157)(57,65)(58,66)(59,67)(60,68)(61,69)(62,70)(63,71)(64,72)(73,128)(74,121)(75,122)(76,123)(77,124)(78,125)(79,126)(80,127)(81,89)(82,90)(83,91)(84,92)(85,93)(86,94)(87,95)(88,96)(97,105)(98,106)(99,107)(100,108)(101,109)(102,110)(103,111)(104,112)(129,142)(130,143)(131,144)(132,137)(133,138)(134,139)(135,140)(136,141) );

G=PermutationGroup([[(1,74,38,47,155),(2,156,48,39,75),(3,76,40,41,157),(4,158,42,33,77),(5,78,34,43,159),(6,160,44,35,79),(7,80,36,45,153),(8,154,46,37,73),(9,85,103,144,62),(10,63,137,104,86),(11,87,97,138,64),(12,57,139,98,88),(13,81,99,140,58),(14,59,141,100,82),(15,83,101,142,60),(16,61,143,102,84),(17,93,111,131,70),(18,71,132,112,94),(19,95,105,133,72),(20,65,134,106,96),(21,89,107,135,66),(22,67,136,108,90),(23,91,109,129,68),(24,69,130,110,92),(25,54,151,121,113),(26,114,122,152,55),(27,56,145,123,115),(28,116,124,146,49),(29,50,147,125,117),(30,118,126,148,51),(31,52,149,127,119),(32,120,128,150,53)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128),(129,130,131,132,133,134,135,136),(137,138,139,140,141,142,143,144),(145,146,147,148,149,150,151,152),(153,154,155,156,157,158,159,160)], [(1,96,88,151),(2,91,81,146),(3,94,82,149),(4,89,83,152),(5,92,84,147),(6,95,85,150),(7,90,86,145),(8,93,87,148),(9,128,79,19),(10,123,80,22),(11,126,73,17),(12,121,74,20),(13,124,75,23),(14,127,76,18),(15,122,77,21),(16,125,78,24),(25,47,134,139),(26,42,135,142),(27,45,136,137),(28,48,129,140),(29,43,130,143),(30,46,131,138),(31,41,132,141),(32,44,133,144),(33,66,60,114),(34,69,61,117),(35,72,62,120),(36,67,63,115),(37,70,64,118),(38,65,57,113),(39,68,58,116),(40,71,59,119),(49,156,109,99),(50,159,110,102),(51,154,111,97),(52,157,112,100),(53,160,105,103),(54,155,106,98),(55,158,107,101),(56,153,108,104)], [(1,151),(2,152),(3,145),(4,146),(5,147),(6,148),(7,149),(8,150),(9,17),(10,18),(11,19),(12,20),(13,21),(14,22),(15,23),(16,24),(25,47),(26,48),(27,41),(28,42),(29,43),(30,44),(31,45),(32,46),(33,116),(34,117),(35,118),(36,119),(37,120),(38,113),(39,114),(40,115),(49,158),(50,159),(51,160),(52,153),(53,154),(54,155),(55,156),(56,157),(57,65),(58,66),(59,67),(60,68),(61,69),(62,70),(63,71),(64,72),(73,128),(74,121),(75,122),(76,123),(77,124),(78,125),(79,126),(80,127),(81,89),(82,90),(83,91),(84,92),(85,93),(86,94),(87,95),(88,96),(97,105),(98,106),(99,107),(100,108),(101,109),(102,110),(103,111),(104,112),(129,142),(130,143),(131,144),(132,137),(133,138),(134,139),(135,140),(136,141)]])

50 conjugacy classes

class 1 2A2B2C2D2E2F4A4B4C4D4E4F4G5A5B8A···8H10A···10F10G10H10I10J10K10L10M10N20A···20H20I20J20K20L
order12222224444444558···810···10101010101010101020···2020202020
size11112282222840402210···102···2444488884···48888

50 irreducible representations

dim111111112222222222224444
type++++++++++++++++--
imageC1C2C2C2C2C2C2C2D4D4D4D5C4○D4SD16D10D10D10C4○D8C5⋊D4C5⋊D4D4×D5D42D5D4.D5D4.8D10
kernelC52C823D4C20.Q8C10.Q16D4⋊Dic5C22×C52C8C20.48D4C2×D4.D5C5×C4⋊D4C52C8C2×C20C22×C10C4⋊D4C20C2×C10C4⋊C4C22×C4C2×D4C10C2×C4C23C4C4C22C2
# reps111111112112242224442244

Matrix representation of C52C823D4 in GL6(𝔽41)

1600000
14180000
001000
000100
000010
000001
,
12310000
35290000
0001100
00151100
00003023
00002511
,
4000000
1410000
00321800
000900
00001739
00002224
,
4000000
0400000
00321800
0032900
00001739
00002124

G:=sub<GL(6,GF(41))| [16,14,0,0,0,0,0,18,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[12,35,0,0,0,0,31,29,0,0,0,0,0,0,0,15,0,0,0,0,11,11,0,0,0,0,0,0,30,25,0,0,0,0,23,11],[40,14,0,0,0,0,0,1,0,0,0,0,0,0,32,0,0,0,0,0,18,9,0,0,0,0,0,0,17,22,0,0,0,0,39,24],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,32,32,0,0,0,0,18,9,0,0,0,0,0,0,17,21,0,0,0,0,39,24] >;

C52C823D4 in GAP, Magma, Sage, TeX

C_5\rtimes_2C_8\rtimes_{23}D_4
% in TeX

G:=Group("C5:2C8:23D4");
// GroupNames label

G:=SmallGroup(320,668);
// by ID

G=gap.SmallGroup(320,668);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,224,253,254,219,1123,297,136,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^5=b^8=c^4=d^2=1,b*a*b^-1=a^-1,a*c=c*a,a*d=d*a,c*b*c^-1=b^3,b*d=d*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽