extension | φ:Q→Out N | d | ρ | Label | ID |
(C4×D5)⋊1(C2×C4) = C10.82+ 1+4 | φ: C2×C4/C2 → C22 ⊆ Out C4×D5 | 160 | | (C4xD5):1(C2xC4) | 320,1176 |
(C4×D5)⋊2(C2×C4) = C42.91D10 | φ: C2×C4/C2 → C22 ⊆ Out C4×D5 | 160 | | (C4xD5):2(C2xC4) | 320,1195 |
(C4×D5)⋊3(C2×C4) = C42⋊11D10 | φ: C2×C4/C2 → C22 ⊆ Out C4×D5 | 80 | | (C4xD5):3(C2xC4) | 320,1217 |
(C4×D5)⋊4(C2×C4) = C42.108D10 | φ: C2×C4/C2 → C22 ⊆ Out C4×D5 | 160 | | (C4xD5):4(C2xC4) | 320,1218 |
(C4×D5)⋊5(C2×C4) = C42.126D10 | φ: C2×C4/C2 → C22 ⊆ Out C4×D5 | 160 | | (C4xD5):5(C2xC4) | 320,1246 |
(C4×D5)⋊6(C2×C4) = C2×D4×F5 | φ: C2×C4/C2 → C22 ⊆ Out C4×D5 | 40 | | (C4xD5):6(C2xC4) | 320,1595 |
(C4×D5)⋊7(C2×C4) = D10.C24 | φ: C2×C4/C2 → C22 ⊆ Out C4×D5 | 40 | 8+ | (C4xD5):7(C2xC4) | 320,1596 |
(C4×D5)⋊8(C2×C4) = D5.2+ 1+4 | φ: C2×C4/C2 → C22 ⊆ Out C4×D5 | 40 | 8 | (C4xD5):8(C2xC4) | 320,1604 |
(C4×D5)⋊9(C2×C4) = C4○D4×F5 | φ: C2×C4/C2 → C22 ⊆ Out C4×D5 | 40 | 8 | (C4xD5):9(C2xC4) | 320,1603 |
(C4×D5)⋊10(C2×C4) = C4×D4⋊2D5 | φ: C2×C4/C4 → C2 ⊆ Out C4×D5 | 160 | | (C4xD5):10(C2xC4) | 320,1208 |
(C4×D5)⋊11(C2×C4) = C4×D4×D5 | φ: C2×C4/C4 → C2 ⊆ Out C4×D5 | 80 | | (C4xD5):11(C2xC4) | 320,1216 |
(C4×D5)⋊12(C2×C4) = C4×Q8⋊2D5 | φ: C2×C4/C4 → C2 ⊆ Out C4×D5 | 160 | | (C4xD5):12(C2xC4) | 320,1245 |
(C4×D5)⋊13(C2×C4) = C4×C4○D20 | φ: C2×C4/C4 → C2 ⊆ Out C4×D5 | 160 | | (C4xD5):13(C2xC4) | 320,1146 |
(C4×D5)⋊14(C2×C4) = C42.188D10 | φ: C2×C4/C4 → C2 ⊆ Out C4×D5 | 160 | | (C4xD5):14(C2xC4) | 320,1194 |
(C4×D5)⋊15(C2×C4) = C2×D5×C4⋊C4 | φ: C2×C4/C22 → C2 ⊆ Out C4×D5 | 160 | | (C4xD5):15(C2xC4) | 320,1173 |
(C4×D5)⋊16(C2×C4) = C2×C4⋊C4⋊7D5 | φ: C2×C4/C22 → C2 ⊆ Out C4×D5 | 160 | | (C4xD5):16(C2xC4) | 320,1174 |
(C4×D5)⋊17(C2×C4) = C2×C42⋊D5 | φ: C2×C4/C22 → C2 ⊆ Out C4×D5 | 160 | | (C4xD5):17(C2xC4) | 320,1144 |
(C4×D5)⋊18(C2×C4) = D5×C42⋊C2 | φ: C2×C4/C22 → C2 ⊆ Out C4×D5 | 80 | | (C4xD5):18(C2xC4) | 320,1192 |
(C4×D5)⋊19(C2×C4) = C22×C4⋊F5 | φ: C2×C4/C22 → C2 ⊆ Out C4×D5 | 80 | | (C4xD5):19(C2xC4) | 320,1591 |
(C4×D5)⋊20(C2×C4) = C2×D10.C23 | φ: C2×C4/C22 → C2 ⊆ Out C4×D5 | 80 | | (C4xD5):20(C2xC4) | 320,1592 |
(C4×D5)⋊21(C2×C4) = C22×C4×F5 | φ: C2×C4/C22 → C2 ⊆ Out C4×D5 | 80 | | (C4xD5):21(C2xC4) | 320,1590 |
extension | φ:Q→Out N | d | ρ | Label | ID |
(C4×D5).1(C2×C4) = (D4×D5)⋊C4 | φ: C2×C4/C2 → C22 ⊆ Out C4×D5 | 80 | | (C4xD5).1(C2xC4) | 320,397 |
(C4×D5).2(C2×C4) = D4⋊(C4×D5) | φ: C2×C4/C2 → C22 ⊆ Out C4×D5 | 160 | | (C4xD5).2(C2xC4) | 320,398 |
(C4×D5).3(C2×C4) = (Q8×D5)⋊C4 | φ: C2×C4/C2 → C22 ⊆ Out C4×D5 | 160 | | (C4xD5).3(C2xC4) | 320,429 |
(C4×D5).4(C2×C4) = Q8⋊(C4×D5) | φ: C2×C4/C2 → C22 ⊆ Out C4×D5 | 160 | | (C4xD5).4(C2xC4) | 320,430 |
(C4×D5).5(C2×C4) = C42⋊D10 | φ: C2×C4/C2 → C22 ⊆ Out C4×D5 | 80 | 4 | (C4xD5).5(C2xC4) | 320,448 |
(C4×D5).6(C2×C4) = C8⋊(C4×D5) | φ: C2×C4/C2 → C22 ⊆ Out C4×D5 | 160 | | (C4xD5).6(C2xC4) | 320,488 |
(C4×D5).7(C2×C4) = C40⋊20(C2×C4) | φ: C2×C4/C2 → C22 ⊆ Out C4×D5 | 160 | | (C4xD5).7(C2xC4) | 320,508 |
(C4×D5).8(C2×C4) = M4(2).25D10 | φ: C2×C4/C2 → C22 ⊆ Out C4×D5 | 80 | 4 | (C4xD5).8(C2xC4) | 320,520 |
(C4×D5).9(C2×C4) = C42.125D10 | φ: C2×C4/C2 → C22 ⊆ Out C4×D5 | 160 | | (C4xD5).9(C2xC4) | 320,1244 |
(C4×D5).10(C2×C4) = C40.47C23 | φ: C2×C4/C2 → C22 ⊆ Out C4×D5 | 80 | 4 | (C4xD5).10(C2xC4) | 320,1417 |
(C4×D5).11(C2×C4) = C20.72C24 | φ: C2×C4/C2 → C22 ⊆ Out C4×D5 | 80 | 4 | (C4xD5).11(C2xC4) | 320,1422 |
(C4×D5).12(C2×C4) = D10.18D8 | φ: C2×C4/C2 → C22 ⊆ Out C4×D5 | 80 | | (C4xD5).12(C2xC4) | 320,212 |
(C4×D5).13(C2×C4) = C20.C42 | φ: C2×C4/C2 → C22 ⊆ Out C4×D5 | 80 | | (C4xD5).13(C2xC4) | 320,213 |
(C4×D5).14(C2×C4) = M4(2)⋊3F5 | φ: C2×C4/C2 → C22 ⊆ Out C4×D5 | 40 | 8 | (C4xD5).14(C2xC4) | 320,238 |
(C4×D5).15(C2×C4) = M4(2).F5 | φ: C2×C4/C2 → C22 ⊆ Out C4×D5 | 80 | 8 | (C4xD5).15(C2xC4) | 320,239 |
(C4×D5).16(C2×C4) = D10.C42 | φ: C2×C4/C2 → C22 ⊆ Out C4×D5 | 160 | | (C4xD5).16(C2xC4) | 320,1039 |
(C4×D5).17(C2×C4) = C4⋊C4×F5 | φ: C2×C4/C2 → C22 ⊆ Out C4×D5 | 80 | | (C4xD5).17(C2xC4) | 320,1048 |
(C4×D5).18(C2×C4) = M4(2)⋊5F5 | φ: C2×C4/C2 → C22 ⊆ Out C4×D5 | 80 | 8 | (C4xD5).18(C2xC4) | 320,1066 |
(C4×D5).19(C2×C4) = C2×D20⋊C4 | φ: C2×C4/C2 → C22 ⊆ Out C4×D5 | 80 | | (C4xD5).19(C2xC4) | 320,1104 |
(C4×D5).20(C2×C4) = (D4×C10)⋊C4 | φ: C2×C4/C2 → C22 ⊆ Out C4×D5 | 40 | 8+ | (C4xD5).20(C2xC4) | 320,1105 |
(C4×D5).21(C2×C4) = C2×D4⋊F5 | φ: C2×C4/C2 → C22 ⊆ Out C4×D5 | 80 | | (C4xD5).21(C2xC4) | 320,1106 |
(C4×D5).22(C2×C4) = (C2×D4)⋊6F5 | φ: C2×C4/C2 → C22 ⊆ Out C4×D5 | 80 | 8- | (C4xD5).22(C2xC4) | 320,1107 |
(C4×D5).23(C2×C4) = C2×Q8⋊F5 | φ: C2×C4/C2 → C22 ⊆ Out C4×D5 | 80 | | (C4xD5).23(C2xC4) | 320,1119 |
(C4×D5).24(C2×C4) = (C2×Q8)⋊4F5 | φ: C2×C4/C2 → C22 ⊆ Out C4×D5 | 80 | 8- | (C4xD5).24(C2xC4) | 320,1120 |
(C4×D5).25(C2×C4) = C2×Q8⋊2F5 | φ: C2×C4/C2 → C22 ⊆ Out C4×D5 | 80 | | (C4xD5).25(C2xC4) | 320,1121 |
(C4×D5).26(C2×C4) = (C2×Q8)⋊6F5 | φ: C2×C4/C2 → C22 ⊆ Out C4×D5 | 80 | 8+ | (C4xD5).26(C2xC4) | 320,1122 |
(C4×D5).27(C2×C4) = D5⋊C4≀C2 | φ: C2×C4/C2 → C22 ⊆ Out C4×D5 | 40 | 8 | (C4xD5).27(C2xC4) | 320,1130 |
(C4×D5).28(C2×C4) = C4○D4⋊F5 | φ: C2×C4/C2 → C22 ⊆ Out C4×D5 | 40 | 8 | (C4xD5).28(C2xC4) | 320,1131 |
(C4×D5).29(C2×C4) = C4○D20⋊C4 | φ: C2×C4/C2 → C22 ⊆ Out C4×D5 | 80 | 8 | (C4xD5).29(C2xC4) | 320,1132 |
(C4×D5).30(C2×C4) = D4⋊F5⋊C2 | φ: C2×C4/C2 → C22 ⊆ Out C4×D5 | 80 | 8 | (C4xD5).30(C2xC4) | 320,1133 |
(C4×D5).31(C2×C4) = C2×D4.F5 | φ: C2×C4/C2 → C22 ⊆ Out C4×D5 | 160 | | (C4xD5).31(C2xC4) | 320,1593 |
(C4×D5).32(C2×C4) = Dic5.C24 | φ: C2×C4/C2 → C22 ⊆ Out C4×D5 | 80 | 8- | (C4xD5).32(C2xC4) | 320,1594 |
(C4×D5).33(C2×C4) = C2×Q8.F5 | φ: C2×C4/C2 → C22 ⊆ Out C4×D5 | 160 | | (C4xD5).33(C2xC4) | 320,1597 |
(C4×D5).34(C2×C4) = Dic5.20C24 | φ: C2×C4/C2 → C22 ⊆ Out C4×D5 | 80 | 8+ | (C4xD5).34(C2xC4) | 320,1598 |
(C4×D5).35(C2×C4) = C2×Q8×F5 | φ: C2×C4/C2 → C22 ⊆ Out C4×D5 | 80 | | (C4xD5).35(C2xC4) | 320,1599 |
(C4×D5).36(C2×C4) = D5.2- 1+4 | φ: C2×C4/C2 → C22 ⊆ Out C4×D5 | 80 | 8- | (C4xD5).36(C2xC4) | 320,1600 |
(C4×D5).37(C2×C4) = M4(2)⋊1F5 | φ: C2×C4/C2 → C22 ⊆ Out C4×D5 | 40 | 8 | (C4xD5).37(C2xC4) | 320,1065 |
(C4×D5).38(C2×C4) = M4(2).1F5 | φ: C2×C4/C2 → C22 ⊆ Out C4×D5 | 80 | 8 | (C4xD5).38(C2xC4) | 320,1067 |
(C4×D5).39(C2×C4) = Dic5.22C24 | φ: C2×C4/C2 → C22 ⊆ Out C4×D5 | 80 | 8 | (C4xD5).39(C2xC4) | 320,1602 |
(C4×D5).40(C2×C4) = C16⋊F5 | φ: C2×C4/C2 → C22 ⊆ Out C4×D5 | 80 | 4 | (C4xD5).40(C2xC4) | 320,183 |
(C4×D5).41(C2×C4) = C16⋊4F5 | φ: C2×C4/C2 → C22 ⊆ Out C4×D5 | 80 | 4 | (C4xD5).41(C2xC4) | 320,184 |
(C4×D5).42(C2×C4) = C42⋊3F5 | φ: C2×C4/C2 → C22 ⊆ Out C4×D5 | 80 | 4 | (C4xD5).42(C2xC4) | 320,201 |
(C4×D5).43(C2×C4) = C20.24C42 | φ: C2×C4/C2 → C22 ⊆ Out C4×D5 | 80 | 4 | (C4xD5).43(C2xC4) | 320,233 |
(C4×D5).44(C2×C4) = C20.25C42 | φ: C2×C4/C2 → C22 ⊆ Out C4×D5 | 80 | 4 | (C4xD5).44(C2xC4) | 320,235 |
(C4×D5).45(C2×C4) = Dic10.C8 | φ: C2×C4/C2 → C22 ⊆ Out C4×D5 | 160 | 8 | (C4xD5).45(C2xC4) | 320,1063 |
(C4×D5).46(C2×C4) = M4(2)×F5 | φ: C2×C4/C2 → C22 ⊆ Out C4×D5 | 40 | 8 | (C4xD5).46(C2xC4) | 320,1064 |
(C4×D5).47(C2×C4) = Dic5.21C24 | φ: C2×C4/C2 → C22 ⊆ Out C4×D5 | 80 | 8 | (C4xD5).47(C2xC4) | 320,1601 |
(C4×D5).48(C2×C4) = D5×D4⋊C4 | φ: C2×C4/C4 → C2 ⊆ Out C4×D5 | 80 | | (C4xD5).48(C2xC4) | 320,396 |
(C4×D5).49(C2×C4) = D4⋊2D5⋊C4 | φ: C2×C4/C4 → C2 ⊆ Out C4×D5 | 160 | | (C4xD5).49(C2xC4) | 320,399 |
(C4×D5).50(C2×C4) = D5×Q8⋊C4 | φ: C2×C4/C4 → C2 ⊆ Out C4×D5 | 160 | | (C4xD5).50(C2xC4) | 320,428 |
(C4×D5).51(C2×C4) = Q8⋊2D5⋊C4 | φ: C2×C4/C4 → C2 ⊆ Out C4×D5 | 160 | | (C4xD5).51(C2xC4) | 320,431 |
(C4×D5).52(C2×C4) = D5×C4≀C2 | φ: C2×C4/C4 → C2 ⊆ Out C4×D5 | 40 | 4 | (C4xD5).52(C2xC4) | 320,447 |
(C4×D5).53(C2×C4) = C4×Q8×D5 | φ: C2×C4/C4 → C2 ⊆ Out C4×D5 | 160 | | (C4xD5).53(C2xC4) | 320,1243 |
(C4×D5).54(C2×C4) = D5×C8○D4 | φ: C2×C4/C4 → C2 ⊆ Out C4×D5 | 80 | 4 | (C4xD5).54(C2xC4) | 320,1421 |
(C4×D5).55(C2×C4) = C4×C8⋊D5 | φ: C2×C4/C4 → C2 ⊆ Out C4×D5 | 160 | | (C4xD5).55(C2xC4) | 320,314 |
(C4×D5).56(C2×C4) = D10.6C42 | φ: C2×C4/C4 → C2 ⊆ Out C4×D5 | 160 | | (C4xD5).56(C2xC4) | 320,334 |
(C4×D5).57(C2×C4) = D20.6C8 | φ: C2×C4/C4 → C2 ⊆ Out C4×D5 | 160 | 2 | (C4xD5).57(C2xC4) | 320,528 |
(C4×D5).58(C2×C4) = D20.5C8 | φ: C2×C4/C4 → C2 ⊆ Out C4×D5 | 160 | 4 | (C4xD5).58(C2xC4) | 320,534 |
(C4×D5).59(C2×C4) = C2×D20.3C4 | φ: C2×C4/C4 → C2 ⊆ Out C4×D5 | 160 | | (C4xD5).59(C2xC4) | 320,1410 |
(C4×D5).60(C2×C4) = C2×D20.2C4 | φ: C2×C4/C4 → C2 ⊆ Out C4×D5 | 160 | | (C4xD5).60(C2xC4) | 320,1416 |
(C4×D5).61(C2×C4) = C42⋊6F5 | φ: C2×C4/C4 → C2 ⊆ Out C4×D5 | 40 | 4 | (C4xD5).61(C2xC4) | 320,200 |
(C4×D5).62(C2×C4) = D10.10D8 | φ: C2×C4/C4 → C2 ⊆ Out C4×D5 | 80 | | (C4xD5).62(C2xC4) | 320,231 |
(C4×D5).63(C2×C4) = C20.10C42 | φ: C2×C4/C4 → C2 ⊆ Out C4×D5 | 160 | | (C4xD5).63(C2xC4) | 320,234 |
(C4×D5).64(C2×C4) = C4×C4.F5 | φ: C2×C4/C4 → C2 ⊆ Out C4×D5 | 160 | | (C4xD5).64(C2xC4) | 320,1015 |
(C4×D5).65(C2×C4) = C4×C4⋊F5 | φ: C2×C4/C4 → C2 ⊆ Out C4×D5 | 80 | | (C4xD5).65(C2xC4) | 320,1025 |
(C4×D5).66(C2×C4) = C20.12C42 | φ: C2×C4/C4 → C2 ⊆ Out C4×D5 | 80 | 4 | (C4xD5).66(C2xC4) | 320,1056 |
(C4×D5).67(C2×C4) = C16×F5 | φ: C2×C4/C4 → C2 ⊆ Out C4×D5 | 80 | 4 | (C4xD5).67(C2xC4) | 320,181 |
(C4×D5).68(C2×C4) = C16⋊7F5 | φ: C2×C4/C4 → C2 ⊆ Out C4×D5 | 80 | 4 | (C4xD5).68(C2xC4) | 320,182 |
(C4×D5).69(C2×C4) = C4×D5⋊C8 | φ: C2×C4/C4 → C2 ⊆ Out C4×D5 | 160 | | (C4xD5).69(C2xC4) | 320,1013 |
(C4×D5).70(C2×C4) = C42.5F5 | φ: C2×C4/C4 → C2 ⊆ Out C4×D5 | 160 | | (C4xD5).70(C2xC4) | 320,1014 |
(C4×D5).71(C2×C4) = C42×F5 | φ: C2×C4/C4 → C2 ⊆ Out C4×D5 | 80 | | (C4xD5).71(C2xC4) | 320,1023 |
(C4×D5).72(C2×C4) = C42⋊4F5 | φ: C2×C4/C4 → C2 ⊆ Out C4×D5 | 80 | | (C4xD5).72(C2xC4) | 320,1024 |
(C4×D5).73(C2×C4) = D5×C4.Q8 | φ: C2×C4/C22 → C2 ⊆ Out C4×D5 | 160 | | (C4xD5).73(C2xC4) | 320,486 |
(C4×D5).74(C2×C4) = (C8×D5)⋊C4 | φ: C2×C4/C22 → C2 ⊆ Out C4×D5 | 160 | | (C4xD5).74(C2xC4) | 320,487 |
(C4×D5).75(C2×C4) = D5×C2.D8 | φ: C2×C4/C22 → C2 ⊆ Out C4×D5 | 160 | | (C4xD5).75(C2xC4) | 320,506 |
(C4×D5).76(C2×C4) = C8.27(C4×D5) | φ: C2×C4/C22 → C2 ⊆ Out C4×D5 | 160 | | (C4xD5).76(C2xC4) | 320,507 |
(C4×D5).77(C2×C4) = D5×C8.C4 | φ: C2×C4/C22 → C2 ⊆ Out C4×D5 | 80 | 4 | (C4xD5).77(C2xC4) | 320,519 |
(C4×D5).78(C2×C4) = C2×D5×M4(2) | φ: C2×C4/C22 → C2 ⊆ Out C4×D5 | 80 | | (C4xD5).78(C2xC4) | 320,1415 |
(C4×D5).79(C2×C4) = D10.5C42 | φ: C2×C4/C22 → C2 ⊆ Out C4×D5 | 160 | | (C4xD5).79(C2xC4) | 320,316 |
(C4×D5).80(C2×C4) = D10.7C42 | φ: C2×C4/C22 → C2 ⊆ Out C4×D5 | 160 | | (C4xD5).80(C2xC4) | 320,335 |
(C4×D5).81(C2×C4) = C2×C80⋊C2 | φ: C2×C4/C22 → C2 ⊆ Out C4×D5 | 160 | | (C4xD5).81(C2xC4) | 320,527 |
(C4×D5).82(C2×C4) = D5×M5(2) | φ: C2×C4/C22 → C2 ⊆ Out C4×D5 | 80 | 4 | (C4xD5).82(C2xC4) | 320,533 |
(C4×D5).83(C2×C4) = C22×C8⋊D5 | φ: C2×C4/C22 → C2 ⊆ Out C4×D5 | 160 | | (C4xD5).83(C2xC4) | 320,1409 |
(C4×D5).84(C2×C4) = C2×C40⋊C4 | φ: C2×C4/C22 → C2 ⊆ Out C4×D5 | 80 | | (C4xD5).84(C2xC4) | 320,1057 |
(C4×D5).85(C2×C4) = C2×D5.D8 | φ: C2×C4/C22 → C2 ⊆ Out C4×D5 | 80 | | (C4xD5).85(C2xC4) | 320,1058 |
(C4×D5).86(C2×C4) = (C2×C8)⋊6F5 | φ: C2×C4/C22 → C2 ⊆ Out C4×D5 | 80 | 4 | (C4xD5).86(C2xC4) | 320,1059 |
(C4×D5).87(C2×C4) = C2×C40.C4 | φ: C2×C4/C22 → C2 ⊆ Out C4×D5 | 160 | | (C4xD5).87(C2xC4) | 320,1060 |
(C4×D5).88(C2×C4) = C2×D10.Q8 | φ: C2×C4/C22 → C2 ⊆ Out C4×D5 | 160 | | (C4xD5).88(C2xC4) | 320,1061 |
(C4×D5).89(C2×C4) = (C8×D5).C4 | φ: C2×C4/C22 → C2 ⊆ Out C4×D5 | 80 | 4 | (C4xD5).89(C2xC4) | 320,1062 |
(C4×D5).90(C2×C4) = C22×C4.F5 | φ: C2×C4/C22 → C2 ⊆ Out C4×D5 | 160 | | (C4xD5).90(C2xC4) | 320,1588 |
(C4×D5).91(C2×C4) = C2×D5⋊C16 | φ: C2×C4/C22 → C2 ⊆ Out C4×D5 | 160 | | (C4xD5).91(C2xC4) | 320,1051 |
(C4×D5).92(C2×C4) = C2×C8.F5 | φ: C2×C4/C22 → C2 ⊆ Out C4×D5 | 160 | | (C4xD5).92(C2xC4) | 320,1052 |
(C4×D5).93(C2×C4) = D5⋊M5(2) | φ: C2×C4/C22 → C2 ⊆ Out C4×D5 | 80 | 4 | (C4xD5).93(C2xC4) | 320,1053 |
(C4×D5).94(C2×C4) = C2×C8×F5 | φ: C2×C4/C22 → C2 ⊆ Out C4×D5 | 80 | | (C4xD5).94(C2xC4) | 320,1054 |
(C4×D5).95(C2×C4) = C2×C8⋊F5 | φ: C2×C4/C22 → C2 ⊆ Out C4×D5 | 80 | | (C4xD5).95(C2xC4) | 320,1055 |
(C4×D5).96(C2×C4) = C22×D5⋊C8 | φ: C2×C4/C22 → C2 ⊆ Out C4×D5 | 160 | | (C4xD5).96(C2xC4) | 320,1587 |
(C4×D5).97(C2×C4) = C2×D5⋊M4(2) | φ: C2×C4/C22 → C2 ⊆ Out C4×D5 | 80 | | (C4xD5).97(C2xC4) | 320,1589 |
(C4×D5).98(C2×C4) = D5×C4×C8 | φ: trivial image | 160 | | (C4xD5).98(C2xC4) | 320,311 |
(C4×D5).99(C2×C4) = D5×C8⋊C4 | φ: trivial image | 160 | | (C4xD5).99(C2xC4) | 320,331 |
(C4×D5).100(C2×C4) = D5×C2×C16 | φ: trivial image | 160 | | (C4xD5).100(C2xC4) | 320,526 |
(C4×D5).101(C2×C4) = D5×C22×C8 | φ: trivial image | 160 | | (C4xD5).101(C2xC4) | 320,1408 |