metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: D10.18D8, C20.1C42, D10.9Q16, D10.18SD16, C4⋊C4⋊3F5, C4⋊F5⋊1C4, D5⋊C8⋊2C4, C4.6(C4×F5), C4⋊Dic5⋊8C4, C20.1(C4⋊C4), (C4×D5).3Q8, D5.(C2.D8), D5.(C4.Q8), (C4×D5).18D4, C4.16(C4⋊F5), D10.20(C4⋊C4), Dic5.3(C4⋊C4), C2.2(D20⋊C4), C5⋊1(C22.4Q16), C2.2(Q8⋊F5), (C2×Dic5).98D4, D5.1(D4⋊C4), C10.4(D4⋊C4), D5.1(Q8⋊C4), C10.4(Q8⋊C4), (C22×D5).142D4, D10.29(C22⋊C4), Dic5.2(C22⋊C4), C2.7(D10.3Q8), C22.33(C22⋊F5), C10.5(C2.C42), (C5×C4⋊C4)⋊3C4, (C2×C4⋊F5).1C2, (C2×D5⋊C8).1C2, (D5×C4⋊C4).14C2, (C2×C4).66(C2×F5), (C2×C20).32(C2×C4), (C4×D5).12(C2×C4), (C2×C4×D5).184C22, (C2×C10).24(C22⋊C4), SmallGroup(320,212)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C22 — C2×C4 — C4⋊C4 |
Generators and relations for D10.18D8
G = < a,b,c,d | a10=b2=c8=1, d2=a-1b, bab=a-1, cac-1=dad-1=a3, cbc-1=dbd-1=a2b, dcd-1=a4bc-1 >
Subgroups: 498 in 114 conjugacy classes, 46 normal (42 characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C8, C2×C4, C2×C4, C23, D5, C10, C4⋊C4, C4⋊C4, C2×C8, C22×C4, Dic5, Dic5, C20, C20, F5, D10, C2×C10, C2×C4⋊C4, C22×C8, C5⋊C8, C4×D5, C4×D5, C2×Dic5, C2×Dic5, C2×C20, C2×C20, C2×F5, C22×D5, C22.4Q16, C10.D4, C4⋊Dic5, C5×C4⋊C4, D5⋊C8, D5⋊C8, C4⋊F5, C4⋊F5, C2×C5⋊C8, C2×C4×D5, C2×C4×D5, C22×F5, D5×C4⋊C4, C2×D5⋊C8, C2×C4⋊F5, D10.18D8
Quotients: C1, C2, C4, C22, C2×C4, D4, Q8, C42, C22⋊C4, C4⋊C4, D8, SD16, Q16, F5, C2.C42, D4⋊C4, Q8⋊C4, C4.Q8, C2.D8, C2×F5, C22.4Q16, C4×F5, C4⋊F5, C22⋊F5, D10.3Q8, D20⋊C4, Q8⋊F5, D10.18D8
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)
(1 10)(2 9)(3 8)(4 7)(5 6)(11 14)(12 13)(15 20)(16 19)(17 18)(21 30)(22 29)(23 28)(24 27)(25 26)(31 34)(32 33)(35 40)(36 39)(37 38)(41 48)(42 47)(43 46)(44 45)(49 50)(51 54)(52 53)(55 60)(56 59)(57 58)(61 66)(62 65)(63 64)(67 70)(68 69)(71 74)(72 73)(75 80)(76 79)(77 78)
(1 69 18 26 33 78 45 53)(2 66 17 29 34 75 44 56)(3 63 16 22 35 72 43 59)(4 70 15 25 36 79 42 52)(5 67 14 28 37 76 41 55)(6 64 13 21 38 73 50 58)(7 61 12 24 39 80 49 51)(8 68 11 27 40 77 48 54)(9 65 20 30 31 74 47 57)(10 62 19 23 32 71 46 60)
(2 8 10 4)(3 5 9 7)(11 46 15 44)(12 43 14 47)(13 50)(16 41 20 49)(17 48 19 42)(18 45)(21 78)(22 75 30 71)(23 72 29 74)(24 79 28 77)(25 76 27 80)(26 73)(31 39 35 37)(32 36 34 40)(51 70 55 68)(52 67 54 61)(53 64)(56 65 60 63)(57 62 59 66)(58 69)
G:=sub<Sym(80)| (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80), (1,10)(2,9)(3,8)(4,7)(5,6)(11,14)(12,13)(15,20)(16,19)(17,18)(21,30)(22,29)(23,28)(24,27)(25,26)(31,34)(32,33)(35,40)(36,39)(37,38)(41,48)(42,47)(43,46)(44,45)(49,50)(51,54)(52,53)(55,60)(56,59)(57,58)(61,66)(62,65)(63,64)(67,70)(68,69)(71,74)(72,73)(75,80)(76,79)(77,78), (1,69,18,26,33,78,45,53)(2,66,17,29,34,75,44,56)(3,63,16,22,35,72,43,59)(4,70,15,25,36,79,42,52)(5,67,14,28,37,76,41,55)(6,64,13,21,38,73,50,58)(7,61,12,24,39,80,49,51)(8,68,11,27,40,77,48,54)(9,65,20,30,31,74,47,57)(10,62,19,23,32,71,46,60), (2,8,10,4)(3,5,9,7)(11,46,15,44)(12,43,14,47)(13,50)(16,41,20,49)(17,48,19,42)(18,45)(21,78)(22,75,30,71)(23,72,29,74)(24,79,28,77)(25,76,27,80)(26,73)(31,39,35,37)(32,36,34,40)(51,70,55,68)(52,67,54,61)(53,64)(56,65,60,63)(57,62,59,66)(58,69)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80), (1,10)(2,9)(3,8)(4,7)(5,6)(11,14)(12,13)(15,20)(16,19)(17,18)(21,30)(22,29)(23,28)(24,27)(25,26)(31,34)(32,33)(35,40)(36,39)(37,38)(41,48)(42,47)(43,46)(44,45)(49,50)(51,54)(52,53)(55,60)(56,59)(57,58)(61,66)(62,65)(63,64)(67,70)(68,69)(71,74)(72,73)(75,80)(76,79)(77,78), (1,69,18,26,33,78,45,53)(2,66,17,29,34,75,44,56)(3,63,16,22,35,72,43,59)(4,70,15,25,36,79,42,52)(5,67,14,28,37,76,41,55)(6,64,13,21,38,73,50,58)(7,61,12,24,39,80,49,51)(8,68,11,27,40,77,48,54)(9,65,20,30,31,74,47,57)(10,62,19,23,32,71,46,60), (2,8,10,4)(3,5,9,7)(11,46,15,44)(12,43,14,47)(13,50)(16,41,20,49)(17,48,19,42)(18,45)(21,78)(22,75,30,71)(23,72,29,74)(24,79,28,77)(25,76,27,80)(26,73)(31,39,35,37)(32,36,34,40)(51,70,55,68)(52,67,54,61)(53,64)(56,65,60,63)(57,62,59,66)(58,69) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80)], [(1,10),(2,9),(3,8),(4,7),(5,6),(11,14),(12,13),(15,20),(16,19),(17,18),(21,30),(22,29),(23,28),(24,27),(25,26),(31,34),(32,33),(35,40),(36,39),(37,38),(41,48),(42,47),(43,46),(44,45),(49,50),(51,54),(52,53),(55,60),(56,59),(57,58),(61,66),(62,65),(63,64),(67,70),(68,69),(71,74),(72,73),(75,80),(76,79),(77,78)], [(1,69,18,26,33,78,45,53),(2,66,17,29,34,75,44,56),(3,63,16,22,35,72,43,59),(4,70,15,25,36,79,42,52),(5,67,14,28,37,76,41,55),(6,64,13,21,38,73,50,58),(7,61,12,24,39,80,49,51),(8,68,11,27,40,77,48,54),(9,65,20,30,31,74,47,57),(10,62,19,23,32,71,46,60)], [(2,8,10,4),(3,5,9,7),(11,46,15,44),(12,43,14,47),(13,50),(16,41,20,49),(17,48,19,42),(18,45),(21,78),(22,75,30,71),(23,72,29,74),(24,79,28,77),(25,76,27,80),(26,73),(31,39,35,37),(32,36,34,40),(51,70,55,68),(52,67,54,61),(53,64),(56,65,60,63),(57,62,59,66),(58,69)]])
38 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 4A | 4B | 4C | 4D | 4E | 4F | 4G | ··· | 4L | 5 | 8A | ··· | 8H | 10A | 10B | 10C | 20A | ··· | 20F |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 5 | 8 | ··· | 8 | 10 | 10 | 10 | 20 | ··· | 20 |
size | 1 | 1 | 1 | 1 | 5 | 5 | 5 | 5 | 2 | 2 | 4 | 4 | 10 | 10 | 20 | ··· | 20 | 4 | 10 | ··· | 10 | 4 | 4 | 4 | 8 | ··· | 8 |
38 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 8 | 8 |
type | + | + | + | + | + | - | + | + | + | - | + | + | + | + | - | |||||||
image | C1 | C2 | C2 | C2 | C4 | C4 | C4 | C4 | D4 | Q8 | D4 | D4 | D8 | SD16 | Q16 | F5 | C2×F5 | C4×F5 | C4⋊F5 | C22⋊F5 | D20⋊C4 | Q8⋊F5 |
kernel | D10.18D8 | D5×C4⋊C4 | C2×D5⋊C8 | C2×C4⋊F5 | C4⋊Dic5 | C5×C4⋊C4 | D5⋊C8 | C4⋊F5 | C4×D5 | C4×D5 | C2×Dic5 | C22×D5 | D10 | D10 | D10 | C4⋊C4 | C2×C4 | C4 | C4 | C22 | C2 | C2 |
# reps | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 | 1 | 1 | 1 | 1 | 2 | 4 | 2 | 1 | 1 | 2 | 2 | 2 | 1 | 1 |
Matrix representation of D10.18D8 ►in GL6(𝔽41)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 40 |
0 | 0 | 1 | 1 | 1 | 1 |
0 | 0 | 40 | 0 | 0 | 0 |
0 | 0 | 0 | 40 | 0 | 0 |
40 | 0 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 40 |
0 | 0 | 0 | 0 | 40 | 0 |
0 | 0 | 0 | 40 | 0 | 0 |
0 | 0 | 40 | 0 | 0 | 0 |
15 | 26 | 0 | 0 | 0 | 0 |
15 | 15 | 0 | 0 | 0 | 0 |
0 | 0 | 7 | 0 | 14 | 14 |
0 | 0 | 14 | 14 | 0 | 7 |
0 | 0 | 27 | 34 | 27 | 0 |
0 | 0 | 34 | 7 | 7 | 34 |
32 | 0 | 0 | 0 | 0 | 0 |
0 | 9 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 40 | 40 | 40 | 40 |
G:=sub<GL(6,GF(41))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,40,0,0,0,0,1,0,40,0,0,0,1,0,0,0,0,40,1,0,0],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,0,40,0,0,0,0,40,0,0,0,0,40,0,0,0,0,40,0,0,0],[15,15,0,0,0,0,26,15,0,0,0,0,0,0,7,14,27,34,0,0,0,14,34,7,0,0,14,0,27,7,0,0,14,7,0,34],[32,0,0,0,0,0,0,9,0,0,0,0,0,0,1,0,0,40,0,0,0,0,1,40,0,0,0,0,0,40,0,0,0,1,0,40] >;
D10.18D8 in GAP, Magma, Sage, TeX
D_{10}._{18}D_8
% in TeX
G:=Group("D10.18D8");
// GroupNames label
G:=SmallGroup(320,212);
// by ID
G=gap.SmallGroup(320,212);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,28,253,64,1684,851,102,6278,3156]);
// Polycyclic
G:=Group<a,b,c,d|a^10=b^2=c^8=1,d^2=a^-1*b,b*a*b=a^-1,c*a*c^-1=d*a*d^-1=a^3,c*b*c^-1=d*b*d^-1=a^2*b,d*c*d^-1=a^4*b*c^-1>;
// generators/relations