Extensions 1→N→G→Q→1 with N=C10×D8 and Q=C2

Direct product G=N×Q with N=C10×D8 and Q=C2
dρLabelID
D8×C2×C10160D8xC2xC10320,1571

Semidirect products G=N:Q with N=C10×D8 and Q=C2
extensionφ:Q→Out NdρLabelID
(C10×D8)⋊1C2 = D8.D10φ: C2/C1C2 ⊆ Out C10×D8804(C10xD8):1C2320,774
(C10×D8)⋊2C2 = C40.23D4φ: C2/C1C2 ⊆ Out C10×D8804(C10xD8):2C2320,787
(C10×D8)⋊3C2 = D813D10φ: C2/C1C2 ⊆ Out C10×D8804(C10xD8):3C2320,1429
(C10×D8)⋊4C2 = C2×C5⋊D16φ: C2/C1C2 ⊆ Out C10×D8160(C10xD8):4C2320,773
(C10×D8)⋊5C2 = C405D4φ: C2/C1C2 ⊆ Out C10×D8160(C10xD8):5C2320,778
(C10×D8)⋊6C2 = C406D4φ: C2/C1C2 ⊆ Out C10×D8160(C10xD8):6C2320,784
(C10×D8)⋊7C2 = C2×D5×D8φ: C2/C1C2 ⊆ Out C10×D880(C10xD8):7C2320,1426
(C10×D8)⋊8C2 = C2×D83D5φ: C2/C1C2 ⊆ Out C10×D8160(C10xD8):8C2320,1428
(C10×D8)⋊9C2 = C4011D4φ: C2/C1C2 ⊆ Out C10×D8160(C10xD8):9C2320,781
(C10×D8)⋊10C2 = C4012D4φ: C2/C1C2 ⊆ Out C10×D8160(C10xD8):10C2320,786
(C10×D8)⋊11C2 = C2×D8⋊D5φ: C2/C1C2 ⊆ Out C10×D880(C10xD8):11C2320,1427
(C10×D8)⋊12C2 = Dic5⋊D8φ: C2/C1C2 ⊆ Out C10×D8160(C10xD8):12C2320,777
(C10×D8)⋊13C2 = D20⋊D4φ: C2/C1C2 ⊆ Out C10×D880(C10xD8):13C2320,783
(C10×D8)⋊14C2 = Dic10⋊D4φ: C2/C1C2 ⊆ Out C10×D8160(C10xD8):14C2320,785
(C10×D8)⋊15C2 = C5×C22⋊D8φ: C2/C1C2 ⊆ Out C10×D880(C10xD8):15C2320,948
(C10×D8)⋊16C2 = C5×D4⋊D4φ: C2/C1C2 ⊆ Out C10×D8160(C10xD8):16C2320,950
(C10×D8)⋊17C2 = C5×C4⋊D8φ: C2/C1C2 ⊆ Out C10×D8160(C10xD8):17C2320,960
(C10×D8)⋊18C2 = C5×C87D4φ: C2/C1C2 ⊆ Out C10×D8160(C10xD8):18C2320,967
(C10×D8)⋊19C2 = C5×C84D4φ: C2/C1C2 ⊆ Out C10×D8160(C10xD8):19C2320,994
(C10×D8)⋊20C2 = C10×D16φ: C2/C1C2 ⊆ Out C10×D8160(C10xD8):20C2320,1006
(C10×D8)⋊21C2 = C5×C82D4φ: C2/C1C2 ⊆ Out C10×D8160(C10xD8):21C2320,970
(C10×D8)⋊22C2 = C5×D4.4D4φ: C2/C1C2 ⊆ Out C10×D8804(C10xD8):22C2320,973
(C10×D8)⋊23C2 = C5×C83D4φ: C2/C1C2 ⊆ Out C10×D8160(C10xD8):23C2320,997
(C10×D8)⋊24C2 = C5×C16⋊C22φ: C2/C1C2 ⊆ Out C10×D8804(C10xD8):24C2320,1010
(C10×D8)⋊25C2 = C10×C8⋊C22φ: C2/C1C2 ⊆ Out C10×D880(C10xD8):25C2320,1575
(C10×D8)⋊26C2 = C5×D4○D8φ: C2/C1C2 ⊆ Out C10×D8804(C10xD8):26C2320,1578
(C10×D8)⋊27C2 = C10×C4○D8φ: trivial image160(C10xD8):27C2320,1574

Non-split extensions G=N.Q with N=C10×D8 and Q=C2
extensionφ:Q→Out NdρLabelID
(C10×D8).1C2 = D8.Dic5φ: C2/C1C2 ⊆ Out C10×D8804(C10xD8).1C2320,121
(C10×D8).2C2 = C10.D16φ: C2/C1C2 ⊆ Out C10×D8160(C10xD8).2C2320,120
(C10×D8).3C2 = C2×D8.D5φ: C2/C1C2 ⊆ Out C10×D8160(C10xD8).3C2320,775
(C10×D8).4C2 = D8×Dic5φ: C2/C1C2 ⊆ Out C10×D8160(C10xD8).4C2320,776
(C10×D8).5C2 = C40.22D4φ: C2/C1C2 ⊆ Out C10×D8160(C10xD8).5C2320,782
(C10×D8).6C2 = D8⋊Dic5φ: C2/C1C2 ⊆ Out C10×D8160(C10xD8).6C2320,779
(C10×D8).7C2 = C5×C2.D16φ: C2/C1C2 ⊆ Out C10×D8160(C10xD8).7C2320,162
(C10×D8).8C2 = (C2×D8).D5φ: C2/C1C2 ⊆ Out C10×D8160(C10xD8).8C2320,780
(C10×D8).9C2 = C5×D4.2D4φ: C2/C1C2 ⊆ Out C10×D8160(C10xD8).9C2320,964
(C10×D8).10C2 = C5×C8.12D4φ: C2/C1C2 ⊆ Out C10×D8160(C10xD8).10C2320,996
(C10×D8).11C2 = C10×SD32φ: C2/C1C2 ⊆ Out C10×D8160(C10xD8).11C2320,1007
(C10×D8).12C2 = C5×M5(2)⋊C2φ: C2/C1C2 ⊆ Out C10×D8804(C10xD8).12C2320,166
(C10×D8).13C2 = C5×D8⋊C4φ: C2/C1C2 ⊆ Out C10×D8160(C10xD8).13C2320,943
(C10×D8).14C2 = D8×C20φ: trivial image160(C10xD8).14C2320,938

׿
×
𝔽