Extensions 1→N→G→Q→1 with N=C10xD8 and Q=C2

Direct product G=NxQ with N=C10xD8 and Q=C2
dρLabelID
D8xC2xC10160D8xC2xC10320,1571

Semidirect products G=N:Q with N=C10xD8 and Q=C2
extensionφ:Q→Out NdρLabelID
(C10xD8):1C2 = D8.D10φ: C2/C1C2 ⊆ Out C10xD8804(C10xD8):1C2320,774
(C10xD8):2C2 = C40.23D4φ: C2/C1C2 ⊆ Out C10xD8804(C10xD8):2C2320,787
(C10xD8):3C2 = D8:13D10φ: C2/C1C2 ⊆ Out C10xD8804(C10xD8):3C2320,1429
(C10xD8):4C2 = C2xC5:D16φ: C2/C1C2 ⊆ Out C10xD8160(C10xD8):4C2320,773
(C10xD8):5C2 = C40:5D4φ: C2/C1C2 ⊆ Out C10xD8160(C10xD8):5C2320,778
(C10xD8):6C2 = C40:6D4φ: C2/C1C2 ⊆ Out C10xD8160(C10xD8):6C2320,784
(C10xD8):7C2 = C2xD5xD8φ: C2/C1C2 ⊆ Out C10xD880(C10xD8):7C2320,1426
(C10xD8):8C2 = C2xD8:3D5φ: C2/C1C2 ⊆ Out C10xD8160(C10xD8):8C2320,1428
(C10xD8):9C2 = C40:11D4φ: C2/C1C2 ⊆ Out C10xD8160(C10xD8):9C2320,781
(C10xD8):10C2 = C40:12D4φ: C2/C1C2 ⊆ Out C10xD8160(C10xD8):10C2320,786
(C10xD8):11C2 = C2xD8:D5φ: C2/C1C2 ⊆ Out C10xD880(C10xD8):11C2320,1427
(C10xD8):12C2 = Dic5:D8φ: C2/C1C2 ⊆ Out C10xD8160(C10xD8):12C2320,777
(C10xD8):13C2 = D20:D4φ: C2/C1C2 ⊆ Out C10xD880(C10xD8):13C2320,783
(C10xD8):14C2 = Dic10:D4φ: C2/C1C2 ⊆ Out C10xD8160(C10xD8):14C2320,785
(C10xD8):15C2 = C5xC22:D8φ: C2/C1C2 ⊆ Out C10xD880(C10xD8):15C2320,948
(C10xD8):16C2 = C5xD4:D4φ: C2/C1C2 ⊆ Out C10xD8160(C10xD8):16C2320,950
(C10xD8):17C2 = C5xC4:D8φ: C2/C1C2 ⊆ Out C10xD8160(C10xD8):17C2320,960
(C10xD8):18C2 = C5xC8:7D4φ: C2/C1C2 ⊆ Out C10xD8160(C10xD8):18C2320,967
(C10xD8):19C2 = C5xC8:4D4φ: C2/C1C2 ⊆ Out C10xD8160(C10xD8):19C2320,994
(C10xD8):20C2 = C10xD16φ: C2/C1C2 ⊆ Out C10xD8160(C10xD8):20C2320,1006
(C10xD8):21C2 = C5xC8:2D4φ: C2/C1C2 ⊆ Out C10xD8160(C10xD8):21C2320,970
(C10xD8):22C2 = C5xD4.4D4φ: C2/C1C2 ⊆ Out C10xD8804(C10xD8):22C2320,973
(C10xD8):23C2 = C5xC8:3D4φ: C2/C1C2 ⊆ Out C10xD8160(C10xD8):23C2320,997
(C10xD8):24C2 = C5xC16:C22φ: C2/C1C2 ⊆ Out C10xD8804(C10xD8):24C2320,1010
(C10xD8):25C2 = C10xC8:C22φ: C2/C1C2 ⊆ Out C10xD880(C10xD8):25C2320,1575
(C10xD8):26C2 = C5xD4oD8φ: C2/C1C2 ⊆ Out C10xD8804(C10xD8):26C2320,1578
(C10xD8):27C2 = C10xC4oD8φ: trivial image160(C10xD8):27C2320,1574

Non-split extensions G=N.Q with N=C10xD8 and Q=C2
extensionφ:Q→Out NdρLabelID
(C10xD8).1C2 = D8.Dic5φ: C2/C1C2 ⊆ Out C10xD8804(C10xD8).1C2320,121
(C10xD8).2C2 = C10.D16φ: C2/C1C2 ⊆ Out C10xD8160(C10xD8).2C2320,120
(C10xD8).3C2 = C2xD8.D5φ: C2/C1C2 ⊆ Out C10xD8160(C10xD8).3C2320,775
(C10xD8).4C2 = D8xDic5φ: C2/C1C2 ⊆ Out C10xD8160(C10xD8).4C2320,776
(C10xD8).5C2 = C40.22D4φ: C2/C1C2 ⊆ Out C10xD8160(C10xD8).5C2320,782
(C10xD8).6C2 = D8:Dic5φ: C2/C1C2 ⊆ Out C10xD8160(C10xD8).6C2320,779
(C10xD8).7C2 = C5xC2.D16φ: C2/C1C2 ⊆ Out C10xD8160(C10xD8).7C2320,162
(C10xD8).8C2 = (C2xD8).D5φ: C2/C1C2 ⊆ Out C10xD8160(C10xD8).8C2320,780
(C10xD8).9C2 = C5xD4.2D4φ: C2/C1C2 ⊆ Out C10xD8160(C10xD8).9C2320,964
(C10xD8).10C2 = C5xC8.12D4φ: C2/C1C2 ⊆ Out C10xD8160(C10xD8).10C2320,996
(C10xD8).11C2 = C10xSD32φ: C2/C1C2 ⊆ Out C10xD8160(C10xD8).11C2320,1007
(C10xD8).12C2 = C5xM5(2):C2φ: C2/C1C2 ⊆ Out C10xD8804(C10xD8).12C2320,166
(C10xD8).13C2 = C5xD8:C4φ: C2/C1C2 ⊆ Out C10xD8160(C10xD8).13C2320,943
(C10xD8).14C2 = D8xC20φ: trivial image160(C10xD8).14C2320,938

׿
x
:
Z
F
o
wr
Q
<