metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C40.23D4, D20.25D4, Dic10.25D4, (C10×D8)⋊2C2, (C2×D8)⋊10D5, C4.61(D4×D5), (C2×C8).87D10, C40.6C4⋊3C2, (C2×D4).67D10, C20.169(C2×D4), C20.D4⋊7C2, C5⋊4(D4.4D4), C8.27(C5⋊D4), D4.D10⋊4C2, D20.3C4⋊1C2, (C2×C40).32C22, C2.18(C20⋊2D4), (C2×C20).437C23, C4○D20.46C22, (D4×C10).86C22, C10.111(C4⋊D4), C4.Dic5.19C22, C22.20(D4⋊2D5), C4.81(C2×C5⋊D4), (C2×C4).126(C22×D5), (C2×C10).158(C4○D4), SmallGroup(320,787)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C40.23D4
G = < a,b,c | a40=c2=1, b4=a20, bab-1=a-1, cac=a9, cbc=a20b3 >
Subgroups: 398 in 108 conjugacy classes, 37 normal (27 characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C8, C8, C2×C4, C2×C4, D4, Q8, C23, D5, C10, C10, C2×C8, C2×C8, M4(2), D8, SD16, C2×D4, C4○D4, Dic5, C20, D10, C2×C10, C2×C10, C4.D4, C8.C4, C8○D4, C2×D8, C8⋊C22, C5⋊2C8, C40, Dic10, C4×D5, D20, C5⋊D4, C2×C20, C5×D4, C22×C10, D4.4D4, C8×D5, C8⋊D5, C4.Dic5, C4.Dic5, D4⋊D5, D4.D5, C2×C40, C5×D8, C4○D20, D4×C10, C40.6C4, C20.D4, D20.3C4, D4.D10, C10×D8, C40.23D4
Quotients: C1, C2, C22, D4, C23, D5, C2×D4, C4○D4, D10, C4⋊D4, C5⋊D4, C22×D5, D4.4D4, D4×D5, D4⋊2D5, C2×C5⋊D4, C20⋊2D4, C40.23D4
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)
(1 41 11 71 21 61 31 51)(2 80 12 70 22 60 32 50)(3 79 13 69 23 59 33 49)(4 78 14 68 24 58 34 48)(5 77 15 67 25 57 35 47)(6 76 16 66 26 56 36 46)(7 75 17 65 27 55 37 45)(8 74 18 64 28 54 38 44)(9 73 19 63 29 53 39 43)(10 72 20 62 30 52 40 42)
(1 66)(2 75)(3 44)(4 53)(5 62)(6 71)(7 80)(8 49)(9 58)(10 67)(11 76)(12 45)(13 54)(14 63)(15 72)(16 41)(17 50)(18 59)(19 68)(20 77)(21 46)(22 55)(23 64)(24 73)(25 42)(26 51)(27 60)(28 69)(29 78)(30 47)(31 56)(32 65)(33 74)(34 43)(35 52)(36 61)(37 70)(38 79)(39 48)(40 57)
G:=sub<Sym(80)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (1,41,11,71,21,61,31,51)(2,80,12,70,22,60,32,50)(3,79,13,69,23,59,33,49)(4,78,14,68,24,58,34,48)(5,77,15,67,25,57,35,47)(6,76,16,66,26,56,36,46)(7,75,17,65,27,55,37,45)(8,74,18,64,28,54,38,44)(9,73,19,63,29,53,39,43)(10,72,20,62,30,52,40,42), (1,66)(2,75)(3,44)(4,53)(5,62)(6,71)(7,80)(8,49)(9,58)(10,67)(11,76)(12,45)(13,54)(14,63)(15,72)(16,41)(17,50)(18,59)(19,68)(20,77)(21,46)(22,55)(23,64)(24,73)(25,42)(26,51)(27,60)(28,69)(29,78)(30,47)(31,56)(32,65)(33,74)(34,43)(35,52)(36,61)(37,70)(38,79)(39,48)(40,57)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (1,41,11,71,21,61,31,51)(2,80,12,70,22,60,32,50)(3,79,13,69,23,59,33,49)(4,78,14,68,24,58,34,48)(5,77,15,67,25,57,35,47)(6,76,16,66,26,56,36,46)(7,75,17,65,27,55,37,45)(8,74,18,64,28,54,38,44)(9,73,19,63,29,53,39,43)(10,72,20,62,30,52,40,42), (1,66)(2,75)(3,44)(4,53)(5,62)(6,71)(7,80)(8,49)(9,58)(10,67)(11,76)(12,45)(13,54)(14,63)(15,72)(16,41)(17,50)(18,59)(19,68)(20,77)(21,46)(22,55)(23,64)(24,73)(25,42)(26,51)(27,60)(28,69)(29,78)(30,47)(31,56)(32,65)(33,74)(34,43)(35,52)(36,61)(37,70)(38,79)(39,48)(40,57) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)], [(1,41,11,71,21,61,31,51),(2,80,12,70,22,60,32,50),(3,79,13,69,23,59,33,49),(4,78,14,68,24,58,34,48),(5,77,15,67,25,57,35,47),(6,76,16,66,26,56,36,46),(7,75,17,65,27,55,37,45),(8,74,18,64,28,54,38,44),(9,73,19,63,29,53,39,43),(10,72,20,62,30,52,40,42)], [(1,66),(2,75),(3,44),(4,53),(5,62),(6,71),(7,80),(8,49),(9,58),(10,67),(11,76),(12,45),(13,54),(14,63),(15,72),(16,41),(17,50),(18,59),(19,68),(20,77),(21,46),(22,55),(23,64),(24,73),(25,42),(26,51),(27,60),(28,69),(29,78),(30,47),(31,56),(32,65),(33,74),(34,43),(35,52),(36,61),(37,70),(38,79),(39,48),(40,57)]])
44 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 4A | 4B | 4C | 5A | 5B | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 10A | ··· | 10F | 10G | ··· | 10N | 20A | 20B | 20C | 20D | 40A | ··· | 40H |
order | 1 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 5 | 5 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 10 | ··· | 10 | 10 | ··· | 10 | 20 | 20 | 20 | 20 | 40 | ··· | 40 |
size | 1 | 1 | 2 | 8 | 8 | 20 | 2 | 2 | 20 | 2 | 2 | 2 | 2 | 4 | 20 | 20 | 40 | 40 | 2 | ··· | 2 | 8 | ··· | 8 | 4 | 4 | 4 | 4 | 4 | ··· | 4 |
44 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | - | |||
image | C1 | C2 | C2 | C2 | C2 | C2 | D4 | D4 | D4 | D5 | C4○D4 | D10 | D10 | C5⋊D4 | D4.4D4 | D4×D5 | D4⋊2D5 | C40.23D4 |
kernel | C40.23D4 | C40.6C4 | C20.D4 | D20.3C4 | D4.D10 | C10×D8 | C40 | Dic10 | D20 | C2×D8 | C2×C10 | C2×C8 | C2×D4 | C8 | C5 | C4 | C22 | C1 |
# reps | 1 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 1 | 2 | 2 | 2 | 4 | 8 | 2 | 2 | 2 | 8 |
Matrix representation of C40.23D4 ►in GL6(𝔽41)
16 | 0 | 0 | 0 | 0 | 0 |
0 | 18 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 40 | 0 | 0 |
0 | 0 | 1 | 24 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 40 |
0 | 0 | 0 | 0 | 1 | 24 |
0 | 15 | 0 | 0 | 0 | 0 |
30 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 40 |
0 | 0 | 0 | 0 | 40 | 0 |
0 | 0 | 17 | 40 | 0 | 0 |
0 | 0 | 1 | 24 | 0 | 0 |
0 | 15 | 0 | 0 | 0 | 0 |
11 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
G:=sub<GL(6,GF(41))| [16,0,0,0,0,0,0,18,0,0,0,0,0,0,0,1,0,0,0,0,40,24,0,0,0,0,0,0,0,1,0,0,0,0,40,24],[0,30,0,0,0,0,15,0,0,0,0,0,0,0,0,0,17,1,0,0,0,0,40,24,0,0,0,40,0,0,0,0,40,0,0,0],[0,11,0,0,0,0,15,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,1,0,0] >;
C40.23D4 in GAP, Magma, Sage, TeX
C_{40}._{23}D_4
% in TeX
G:=Group("C40.23D4");
// GroupNames label
G:=SmallGroup(320,787);
// by ID
G=gap.SmallGroup(320,787);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,120,254,219,1123,297,136,438,102,12550]);
// Polycyclic
G:=Group<a,b,c|a^40=c^2=1,b^4=a^20,b*a*b^-1=a^-1,c*a*c=a^9,c*b*c=a^20*b^3>;
// generators/relations