Copied to
clipboard

G = C2×C4⋊D20order 320 = 26·5

Direct product of C2 and C4⋊D20

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C2×C4⋊D20, C43(C2×D20), (C2×C20)⋊8D4, C204(C2×D4), C4⋊C438D10, D102(C2×D4), (C2×C4)⋊10D20, C102(C4⋊D4), (C22×D20)⋊7C2, (C22×D5)⋊10D4, C10.9(C22×D4), (C2×D20)⋊45C22, (C2×C10).50C24, C22.67(C2×D20), C22.133(D4×D5), C2.11(C22×D20), (C2×C20).487C23, (C22×C4).360D10, D10⋊C450C22, C22.84(C23×D5), C23.328(C22×D5), (C22×C10).399C23, (C22×C20).217C22, C22.36(Q82D5), (C2×Dic5).198C23, (C23×D5).112C22, (C22×D5).166C23, (C22×Dic5).236C22, C52(C2×C4⋊D4), C2.15(C2×D4×D5), (C2×C4⋊C4)⋊15D5, (C10×C4⋊C4)⋊12C2, (D5×C22×C4)⋊1C2, (C2×C4×D5)⋊55C22, (C5×C4⋊C4)⋊46C22, C2.7(C2×Q82D5), C10.109(C2×C4○D4), (C2×C10).174(C2×D4), (C2×D10⋊C4)⋊20C2, (C2×C4).141(C22×D5), (C2×C10).197(C4○D4), SmallGroup(320,1178)

Series: Derived Chief Lower central Upper central

C1C2×C10 — C2×C4⋊D20
C1C5C10C2×C10C22×D5C23×D5D5×C22×C4 — C2×C4⋊D20
C5C2×C10 — C2×C4⋊D20
C1C23C2×C4⋊C4

Generators and relations for C2×C4⋊D20
 G = < a,b,c,d | a2=b4=c20=d2=1, ab=ba, ac=ca, ad=da, cbc-1=dbd=b-1, dcd=c-1 >

Subgroups: 1902 in 426 conjugacy classes, 135 normal (21 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C22, C5, C2×C4, C2×C4, D4, C23, C23, D5, C10, C10, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C22×C4, C2×D4, C24, Dic5, C20, C20, D10, D10, C2×C10, C2×C10, C2×C22⋊C4, C2×C4⋊C4, C4⋊D4, C23×C4, C22×D4, C4×D5, D20, C2×Dic5, C2×Dic5, C2×C20, C2×C20, C22×D5, C22×D5, C22×C10, C2×C4⋊D4, D10⋊C4, C5×C4⋊C4, C2×C4×D5, C2×C4×D5, C2×D20, C2×D20, C22×Dic5, C22×C20, C22×C20, C23×D5, C23×D5, C4⋊D20, C2×D10⋊C4, C10×C4⋊C4, D5×C22×C4, C22×D20, C22×D20, C2×C4⋊D20
Quotients: C1, C2, C22, D4, C23, D5, C2×D4, C4○D4, C24, D10, C4⋊D4, C22×D4, C2×C4○D4, D20, C22×D5, C2×C4⋊D4, C2×D20, D4×D5, Q82D5, C23×D5, C4⋊D20, C22×D20, C2×D4×D5, C2×Q82D5, C2×C4⋊D20

Smallest permutation representation of C2×C4⋊D20
On 160 points
Generators in S160
(1 141)(2 142)(3 143)(4 144)(5 145)(6 146)(7 147)(8 148)(9 149)(10 150)(11 151)(12 152)(13 153)(14 154)(15 155)(16 156)(17 157)(18 158)(19 159)(20 160)(21 97)(22 98)(23 99)(24 100)(25 81)(26 82)(27 83)(28 84)(29 85)(30 86)(31 87)(32 88)(33 89)(34 90)(35 91)(36 92)(37 93)(38 94)(39 95)(40 96)(41 125)(42 126)(43 127)(44 128)(45 129)(46 130)(47 131)(48 132)(49 133)(50 134)(51 135)(52 136)(53 137)(54 138)(55 139)(56 140)(57 121)(58 122)(59 123)(60 124)(61 102)(62 103)(63 104)(64 105)(65 106)(66 107)(67 108)(68 109)(69 110)(70 111)(71 112)(72 113)(73 114)(74 115)(75 116)(76 117)(77 118)(78 119)(79 120)(80 101)
(1 119 90 52)(2 53 91 120)(3 101 92 54)(4 55 93 102)(5 103 94 56)(6 57 95 104)(7 105 96 58)(8 59 97 106)(9 107 98 60)(10 41 99 108)(11 109 100 42)(12 43 81 110)(13 111 82 44)(14 45 83 112)(15 113 84 46)(16 47 85 114)(17 115 86 48)(18 49 87 116)(19 117 88 50)(20 51 89 118)(21 65 148 123)(22 124 149 66)(23 67 150 125)(24 126 151 68)(25 69 152 127)(26 128 153 70)(27 71 154 129)(28 130 155 72)(29 73 156 131)(30 132 157 74)(31 75 158 133)(32 134 159 76)(33 77 160 135)(34 136 141 78)(35 79 142 137)(36 138 143 80)(37 61 144 139)(38 140 145 62)(39 63 146 121)(40 122 147 64)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 28)(2 27)(3 26)(4 25)(5 24)(6 23)(7 22)(8 21)(9 40)(10 39)(11 38)(12 37)(13 36)(14 35)(15 34)(16 33)(17 32)(18 31)(19 30)(20 29)(41 121)(42 140)(43 139)(44 138)(45 137)(46 136)(47 135)(48 134)(49 133)(50 132)(51 131)(52 130)(53 129)(54 128)(55 127)(56 126)(57 125)(58 124)(59 123)(60 122)(61 110)(62 109)(63 108)(64 107)(65 106)(66 105)(67 104)(68 103)(69 102)(70 101)(71 120)(72 119)(73 118)(74 117)(75 116)(76 115)(77 114)(78 113)(79 112)(80 111)(81 144)(82 143)(83 142)(84 141)(85 160)(86 159)(87 158)(88 157)(89 156)(90 155)(91 154)(92 153)(93 152)(94 151)(95 150)(96 149)(97 148)(98 147)(99 146)(100 145)

G:=sub<Sym(160)| (1,141)(2,142)(3,143)(4,144)(5,145)(6,146)(7,147)(8,148)(9,149)(10,150)(11,151)(12,152)(13,153)(14,154)(15,155)(16,156)(17,157)(18,158)(19,159)(20,160)(21,97)(22,98)(23,99)(24,100)(25,81)(26,82)(27,83)(28,84)(29,85)(30,86)(31,87)(32,88)(33,89)(34,90)(35,91)(36,92)(37,93)(38,94)(39,95)(40,96)(41,125)(42,126)(43,127)(44,128)(45,129)(46,130)(47,131)(48,132)(49,133)(50,134)(51,135)(52,136)(53,137)(54,138)(55,139)(56,140)(57,121)(58,122)(59,123)(60,124)(61,102)(62,103)(63,104)(64,105)(65,106)(66,107)(67,108)(68,109)(69,110)(70,111)(71,112)(72,113)(73,114)(74,115)(75,116)(76,117)(77,118)(78,119)(79,120)(80,101), (1,119,90,52)(2,53,91,120)(3,101,92,54)(4,55,93,102)(5,103,94,56)(6,57,95,104)(7,105,96,58)(8,59,97,106)(9,107,98,60)(10,41,99,108)(11,109,100,42)(12,43,81,110)(13,111,82,44)(14,45,83,112)(15,113,84,46)(16,47,85,114)(17,115,86,48)(18,49,87,116)(19,117,88,50)(20,51,89,118)(21,65,148,123)(22,124,149,66)(23,67,150,125)(24,126,151,68)(25,69,152,127)(26,128,153,70)(27,71,154,129)(28,130,155,72)(29,73,156,131)(30,132,157,74)(31,75,158,133)(32,134,159,76)(33,77,160,135)(34,136,141,78)(35,79,142,137)(36,138,143,80)(37,61,144,139)(38,140,145,62)(39,63,146,121)(40,122,147,64), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,28)(2,27)(3,26)(4,25)(5,24)(6,23)(7,22)(8,21)(9,40)(10,39)(11,38)(12,37)(13,36)(14,35)(15,34)(16,33)(17,32)(18,31)(19,30)(20,29)(41,121)(42,140)(43,139)(44,138)(45,137)(46,136)(47,135)(48,134)(49,133)(50,132)(51,131)(52,130)(53,129)(54,128)(55,127)(56,126)(57,125)(58,124)(59,123)(60,122)(61,110)(62,109)(63,108)(64,107)(65,106)(66,105)(67,104)(68,103)(69,102)(70,101)(71,120)(72,119)(73,118)(74,117)(75,116)(76,115)(77,114)(78,113)(79,112)(80,111)(81,144)(82,143)(83,142)(84,141)(85,160)(86,159)(87,158)(88,157)(89,156)(90,155)(91,154)(92,153)(93,152)(94,151)(95,150)(96,149)(97,148)(98,147)(99,146)(100,145)>;

G:=Group( (1,141)(2,142)(3,143)(4,144)(5,145)(6,146)(7,147)(8,148)(9,149)(10,150)(11,151)(12,152)(13,153)(14,154)(15,155)(16,156)(17,157)(18,158)(19,159)(20,160)(21,97)(22,98)(23,99)(24,100)(25,81)(26,82)(27,83)(28,84)(29,85)(30,86)(31,87)(32,88)(33,89)(34,90)(35,91)(36,92)(37,93)(38,94)(39,95)(40,96)(41,125)(42,126)(43,127)(44,128)(45,129)(46,130)(47,131)(48,132)(49,133)(50,134)(51,135)(52,136)(53,137)(54,138)(55,139)(56,140)(57,121)(58,122)(59,123)(60,124)(61,102)(62,103)(63,104)(64,105)(65,106)(66,107)(67,108)(68,109)(69,110)(70,111)(71,112)(72,113)(73,114)(74,115)(75,116)(76,117)(77,118)(78,119)(79,120)(80,101), (1,119,90,52)(2,53,91,120)(3,101,92,54)(4,55,93,102)(5,103,94,56)(6,57,95,104)(7,105,96,58)(8,59,97,106)(9,107,98,60)(10,41,99,108)(11,109,100,42)(12,43,81,110)(13,111,82,44)(14,45,83,112)(15,113,84,46)(16,47,85,114)(17,115,86,48)(18,49,87,116)(19,117,88,50)(20,51,89,118)(21,65,148,123)(22,124,149,66)(23,67,150,125)(24,126,151,68)(25,69,152,127)(26,128,153,70)(27,71,154,129)(28,130,155,72)(29,73,156,131)(30,132,157,74)(31,75,158,133)(32,134,159,76)(33,77,160,135)(34,136,141,78)(35,79,142,137)(36,138,143,80)(37,61,144,139)(38,140,145,62)(39,63,146,121)(40,122,147,64), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,28)(2,27)(3,26)(4,25)(5,24)(6,23)(7,22)(8,21)(9,40)(10,39)(11,38)(12,37)(13,36)(14,35)(15,34)(16,33)(17,32)(18,31)(19,30)(20,29)(41,121)(42,140)(43,139)(44,138)(45,137)(46,136)(47,135)(48,134)(49,133)(50,132)(51,131)(52,130)(53,129)(54,128)(55,127)(56,126)(57,125)(58,124)(59,123)(60,122)(61,110)(62,109)(63,108)(64,107)(65,106)(66,105)(67,104)(68,103)(69,102)(70,101)(71,120)(72,119)(73,118)(74,117)(75,116)(76,115)(77,114)(78,113)(79,112)(80,111)(81,144)(82,143)(83,142)(84,141)(85,160)(86,159)(87,158)(88,157)(89,156)(90,155)(91,154)(92,153)(93,152)(94,151)(95,150)(96,149)(97,148)(98,147)(99,146)(100,145) );

G=PermutationGroup([[(1,141),(2,142),(3,143),(4,144),(5,145),(6,146),(7,147),(8,148),(9,149),(10,150),(11,151),(12,152),(13,153),(14,154),(15,155),(16,156),(17,157),(18,158),(19,159),(20,160),(21,97),(22,98),(23,99),(24,100),(25,81),(26,82),(27,83),(28,84),(29,85),(30,86),(31,87),(32,88),(33,89),(34,90),(35,91),(36,92),(37,93),(38,94),(39,95),(40,96),(41,125),(42,126),(43,127),(44,128),(45,129),(46,130),(47,131),(48,132),(49,133),(50,134),(51,135),(52,136),(53,137),(54,138),(55,139),(56,140),(57,121),(58,122),(59,123),(60,124),(61,102),(62,103),(63,104),(64,105),(65,106),(66,107),(67,108),(68,109),(69,110),(70,111),(71,112),(72,113),(73,114),(74,115),(75,116),(76,117),(77,118),(78,119),(79,120),(80,101)], [(1,119,90,52),(2,53,91,120),(3,101,92,54),(4,55,93,102),(5,103,94,56),(6,57,95,104),(7,105,96,58),(8,59,97,106),(9,107,98,60),(10,41,99,108),(11,109,100,42),(12,43,81,110),(13,111,82,44),(14,45,83,112),(15,113,84,46),(16,47,85,114),(17,115,86,48),(18,49,87,116),(19,117,88,50),(20,51,89,118),(21,65,148,123),(22,124,149,66),(23,67,150,125),(24,126,151,68),(25,69,152,127),(26,128,153,70),(27,71,154,129),(28,130,155,72),(29,73,156,131),(30,132,157,74),(31,75,158,133),(32,134,159,76),(33,77,160,135),(34,136,141,78),(35,79,142,137),(36,138,143,80),(37,61,144,139),(38,140,145,62),(39,63,146,121),(40,122,147,64)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,28),(2,27),(3,26),(4,25),(5,24),(6,23),(7,22),(8,21),(9,40),(10,39),(11,38),(12,37),(13,36),(14,35),(15,34),(16,33),(17,32),(18,31),(19,30),(20,29),(41,121),(42,140),(43,139),(44,138),(45,137),(46,136),(47,135),(48,134),(49,133),(50,132),(51,131),(52,130),(53,129),(54,128),(55,127),(56,126),(57,125),(58,124),(59,123),(60,122),(61,110),(62,109),(63,108),(64,107),(65,106),(66,105),(67,104),(68,103),(69,102),(70,101),(71,120),(72,119),(73,118),(74,117),(75,116),(76,115),(77,114),(78,113),(79,112),(80,111),(81,144),(82,143),(83,142),(84,141),(85,160),(86,159),(87,158),(88,157),(89,156),(90,155),(91,154),(92,153),(93,152),(94,151),(95,150),(96,149),(97,148),(98,147),(99,146),(100,145)]])

68 conjugacy classes

class 1 2A···2G2H2I2J2K2L2M2N2O4A4B4C4D4E4F4G4H4I4J4K4L5A5B10A···10N20A···20X
order12···2222222224444444444445510···1020···20
size11···110101010202020202222444410101010222···24···4

68 irreducible representations

dim111111222222244
type++++++++++++++
imageC1C2C2C2C2C2D4D4D5C4○D4D10D10D20D4×D5Q82D5
kernelC2×C4⋊D20C4⋊D20C2×D10⋊C4C10×C4⋊C4D5×C22×C4C22×D20C2×C20C22×D5C2×C4⋊C4C2×C10C4⋊C4C22×C4C2×C4C22C22
# reps1821134424861644

Matrix representation of C2×C4⋊D20 in GL6(𝔽41)

4000000
0400000
001000
000100
000010
000001
,
4000000
0400000
001000
000100
00002936
00002912
,
34400000
100000
00253900
0021300
00001537
00003626
,
710000
34340000
0035100
006600
000010
00002840

G:=sub<GL(6,GF(41))| [40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,29,29,0,0,0,0,36,12],[34,1,0,0,0,0,40,0,0,0,0,0,0,0,25,2,0,0,0,0,39,13,0,0,0,0,0,0,15,36,0,0,0,0,37,26],[7,34,0,0,0,0,1,34,0,0,0,0,0,0,35,6,0,0,0,0,1,6,0,0,0,0,0,0,1,28,0,0,0,0,0,40] >;

C2×C4⋊D20 in GAP, Magma, Sage, TeX

C_2\times C_4\rtimes D_{20}
% in TeX

G:=Group("C2xC4:D20");
// GroupNames label

G:=SmallGroup(320,1178);
// by ID

G=gap.SmallGroup(320,1178);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,184,675,297,80,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^4=c^20=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c^-1=d*b*d=b^-1,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽