Copied to
clipboard

G = D10⋊(C4⋊C4)  order 320 = 26·5

The semidirect product of D10 and C4⋊C4 acting via C4⋊C4/C22=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D10⋊(C4⋊C4), C2.9(D4×F5), C10.6(C4×D4), C22⋊C44F5, (C2×F5).3D4, C222(C4⋊F5), C23.D59C4, D10⋊C41C4, C5⋊(C23.8Q8), D10.27(C2×D4), D5.1C22≀C2, D10.10(C2×Q8), (C23×F5).2C2, C23.28(C2×F5), D10.3Q86C2, (C22×D5).62D4, D5.1(C22⋊Q8), D10.43(C4○D4), (C22×D5).10Q8, (C22×F5).4C22, C22.74(C22×F5), (C23×D5).84C22, D5.1(C22.D4), (C22×D5).269C23, (C2×C10)⋊(C4⋊C4), (C2×C4⋊F5)⋊6C2, (C2×C4)⋊2(C2×F5), (C2×C20)⋊8(C2×C4), C10.8(C2×C4⋊C4), C2.11(C2×C4⋊F5), (C5×C22⋊C4)⋊4C4, (D5×C22⋊C4).5C2, (C2×C22⋊F5).4C2, (C2×Dic5)⋊15(C2×C4), (C2×C4×D5).275C22, (C22×C10).20(C2×C4), (C2×C10).37(C22×C4), (C22×D5).44(C2×C4), SmallGroup(320,1037)

Series: Derived Chief Lower central Upper central

C1C2×C10 — D10⋊(C4⋊C4)
C1C5D5D10C22×D5C22×F5C23×F5 — D10⋊(C4⋊C4)
C5C2×C10 — D10⋊(C4⋊C4)
C1C22C22⋊C4

Generators and relations for D10⋊(C4⋊C4)
 G = < a,b,c,d | a10=b2=c4=d4=1, bab=cac-1=a-1, dad-1=a3, cbc-1=a3b, dbd-1=a2b, dcd-1=c-1 >

Subgroups: 1018 in 234 conjugacy classes, 64 normal (24 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C5, C2×C4, C2×C4, C23, C23, D5, D5, D5, C10, C10, C10, C22⋊C4, C22⋊C4, C4⋊C4, C22×C4, C24, Dic5, C20, F5, D10, D10, D10, C2×C10, C2×C10, C2×C10, C2.C42, C2×C22⋊C4, C2×C4⋊C4, C23×C4, C4×D5, C2×Dic5, C2×C20, C2×F5, C2×F5, C22×D5, C22×D5, C22×D5, C22×C10, C23.8Q8, D10⋊C4, C23.D5, C5×C22⋊C4, C4⋊F5, C22⋊F5, C2×C4×D5, C22×F5, C22×F5, C22×F5, C23×D5, D10.3Q8, D5×C22⋊C4, C2×C4⋊F5, C2×C22⋊F5, C23×F5, D10⋊(C4⋊C4)
Quotients: C1, C2, C4, C22, C2×C4, D4, Q8, C23, C4⋊C4, C22×C4, C2×D4, C2×Q8, C4○D4, F5, C2×C4⋊C4, C4×D4, C22≀C2, C22⋊Q8, C22.D4, C2×F5, C23.8Q8, C4⋊F5, C22×F5, C2×C4⋊F5, D4×F5, D10⋊(C4⋊C4)

Smallest permutation representation of D10⋊(C4⋊C4)
On 40 points
Generators in S40
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)
(1 12)(2 11)(3 20)(4 19)(5 18)(6 17)(7 16)(8 15)(9 14)(10 13)(21 39)(22 38)(23 37)(24 36)(25 35)(26 34)(27 33)(28 32)(29 31)(30 40)
(1 33 13 23)(2 32 14 22)(3 31 15 21)(4 40 16 30)(5 39 17 29)(6 38 18 28)(7 37 19 27)(8 36 20 26)(9 35 11 25)(10 34 12 24)
(2 8 10 4)(3 5 9 7)(11 19 15 17)(12 16 14 20)(21 39 25 37)(22 36 24 40)(23 33)(26 34 30 32)(27 31 29 35)(28 38)

G:=sub<Sym(40)| (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40), (1,12)(2,11)(3,20)(4,19)(5,18)(6,17)(7,16)(8,15)(9,14)(10,13)(21,39)(22,38)(23,37)(24,36)(25,35)(26,34)(27,33)(28,32)(29,31)(30,40), (1,33,13,23)(2,32,14,22)(3,31,15,21)(4,40,16,30)(5,39,17,29)(6,38,18,28)(7,37,19,27)(8,36,20,26)(9,35,11,25)(10,34,12,24), (2,8,10,4)(3,5,9,7)(11,19,15,17)(12,16,14,20)(21,39,25,37)(22,36,24,40)(23,33)(26,34,30,32)(27,31,29,35)(28,38)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40), (1,12)(2,11)(3,20)(4,19)(5,18)(6,17)(7,16)(8,15)(9,14)(10,13)(21,39)(22,38)(23,37)(24,36)(25,35)(26,34)(27,33)(28,32)(29,31)(30,40), (1,33,13,23)(2,32,14,22)(3,31,15,21)(4,40,16,30)(5,39,17,29)(6,38,18,28)(7,37,19,27)(8,36,20,26)(9,35,11,25)(10,34,12,24), (2,8,10,4)(3,5,9,7)(11,19,15,17)(12,16,14,20)(21,39,25,37)(22,36,24,40)(23,33)(26,34,30,32)(27,31,29,35)(28,38) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40)], [(1,12),(2,11),(3,20),(4,19),(5,18),(6,17),(7,16),(8,15),(9,14),(10,13),(21,39),(22,38),(23,37),(24,36),(25,35),(26,34),(27,33),(28,32),(29,31),(30,40)], [(1,33,13,23),(2,32,14,22),(3,31,15,21),(4,40,16,30),(5,39,17,29),(6,38,18,28),(7,37,19,27),(8,36,20,26),(9,35,11,25),(10,34,12,24)], [(2,8,10,4),(3,5,9,7),(11,19,15,17),(12,16,14,20),(21,39,25,37),(22,36,24,40),(23,33),(26,34,30,32),(27,31,29,35),(28,38)]])

38 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I2J2K4A4B4C···4J4K···4P 5 10A10B10C10D10E20A20B20C20D
order122222222222444···44···45101010101020202020
size111122555510104410···1020···204444888888

38 irreducible representations

dim111111111222244448
type++++++++-++++
imageC1C2C2C2C2C2C4C4C4D4D4Q8C4○D4F5C2×F5C2×F5C4⋊F5D4×F5
kernelD10⋊(C4⋊C4)D10.3Q8D5×C22⋊C4C2×C4⋊F5C2×C22⋊F5C23×F5D10⋊C4C23.D5C5×C22⋊C4C2×F5C22×D5C22×D5D10C22⋊C4C2×C4C23C22C2
# reps121211422422412142

Matrix representation of D10⋊(C4⋊C4) in GL6(𝔽41)

4000000
0400000
0000401
0000400
0010400
0001400
,
4000000
010000
0004010
0040010
000010
0000140
,
0400000
4000000
002701434
00271470
00071427
003414027
,
900000
090000
000010
001000
000001
000100

G:=sub<GL(6,GF(41))| [40,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,40,40,40,40,0,0,1,0,0,0],[40,0,0,0,0,0,0,1,0,0,0,0,0,0,0,40,0,0,0,0,40,0,0,0,0,0,1,1,1,1,0,0,0,0,0,40],[0,40,0,0,0,0,40,0,0,0,0,0,0,0,27,27,0,34,0,0,0,14,7,14,0,0,14,7,14,0,0,0,34,0,27,27],[9,0,0,0,0,0,0,9,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,1,0] >;

D10⋊(C4⋊C4) in GAP, Magma, Sage, TeX

D_{10}\rtimes (C_4\rtimes C_4)
% in TeX

G:=Group("D10:(C4:C4)");
// GroupNames label

G:=SmallGroup(320,1037);
// by ID

G=gap.SmallGroup(320,1037);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,56,422,387,100,6278,1595]);
// Polycyclic

G:=Group<a,b,c,d|a^10=b^2=c^4=d^4=1,b*a*b=c*a*c^-1=a^-1,d*a*d^-1=a^3,c*b*c^-1=a^3*b,d*b*d^-1=a^2*b,d*c*d^-1=c^-1>;
// generators/relations

׿
×
𝔽