direct product, non-abelian, soluble, monomial
Aliases: C2×C7⋊S4, C14⋊S4, C23⋊D21, C22⋊D42, A4⋊2D14, C7⋊2(C2×S4), (C2×A4)⋊D7, (C2×C14)⋊3D6, (A4×C14)⋊1C2, (C7×A4)⋊2C22, (C22×C14)⋊2S3, SmallGroup(336,215)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C22 — C2×C14 — C7×A4 — C7⋊S4 — C2×C7⋊S4 |
C7×A4 — C2×C7⋊S4 |
Generators and relations for C2×C7⋊S4
G = < a,b,c,d,e,f | a2=b7=c2=d2=e3=f2=1, ab=ba, ac=ca, ad=da, ae=ea, af=fa, bc=cb, bd=db, be=eb, fbf=b-1, ece-1=fcf=cd=dc, ede-1=c, df=fd, fef=e-1 >
Subgroups: 628 in 66 conjugacy classes, 15 normal (13 characteristic)
C1, C2, C2, C3, C4, C22, C22, S3, C6, C7, C2×C4, D4, C23, C23, A4, D6, D7, C14, C14, C2×D4, C21, S4, C2×A4, Dic7, D14, C2×C14, C2×C14, D21, C42, C2×S4, C2×Dic7, C7⋊D4, C22×D7, C22×C14, C7×A4, D42, C2×C7⋊D4, C7⋊S4, A4×C14, C2×C7⋊S4
Quotients: C1, C2, C22, S3, D6, D7, S4, D14, D21, C2×S4, D42, C7⋊S4, C2×C7⋊S4
(1 17)(2 18)(3 19)(4 20)(5 21)(6 15)(7 16)(8 37)(9 38)(10 39)(11 40)(12 41)(13 42)(14 36)(22 35)(23 29)(24 30)(25 31)(26 32)(27 33)(28 34)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35)(36 37 38 39 40 41 42)
(1 17)(2 18)(3 19)(4 20)(5 21)(6 15)(7 16)(8 37)(9 38)(10 39)(11 40)(12 41)(13 42)(14 36)
(8 37)(9 38)(10 39)(11 40)(12 41)(13 42)(14 36)(22 35)(23 29)(24 30)(25 31)(26 32)(27 33)(28 34)
(1 39 25)(2 40 26)(3 41 27)(4 42 28)(5 36 22)(6 37 23)(7 38 24)(8 29 15)(9 30 16)(10 31 17)(11 32 18)(12 33 19)(13 34 20)(14 35 21)
(1 17)(2 16)(3 15)(4 21)(5 20)(6 19)(7 18)(8 27)(9 26)(10 25)(11 24)(12 23)(13 22)(14 28)(29 41)(30 40)(31 39)(32 38)(33 37)(34 36)(35 42)
G:=sub<Sym(42)| (1,17)(2,18)(3,19)(4,20)(5,21)(6,15)(7,16)(8,37)(9,38)(10,39)(11,40)(12,41)(13,42)(14,36)(22,35)(23,29)(24,30)(25,31)(26,32)(27,33)(28,34), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42), (1,17)(2,18)(3,19)(4,20)(5,21)(6,15)(7,16)(8,37)(9,38)(10,39)(11,40)(12,41)(13,42)(14,36), (8,37)(9,38)(10,39)(11,40)(12,41)(13,42)(14,36)(22,35)(23,29)(24,30)(25,31)(26,32)(27,33)(28,34), (1,39,25)(2,40,26)(3,41,27)(4,42,28)(5,36,22)(6,37,23)(7,38,24)(8,29,15)(9,30,16)(10,31,17)(11,32,18)(12,33,19)(13,34,20)(14,35,21), (1,17)(2,16)(3,15)(4,21)(5,20)(6,19)(7,18)(8,27)(9,26)(10,25)(11,24)(12,23)(13,22)(14,28)(29,41)(30,40)(31,39)(32,38)(33,37)(34,36)(35,42)>;
G:=Group( (1,17)(2,18)(3,19)(4,20)(5,21)(6,15)(7,16)(8,37)(9,38)(10,39)(11,40)(12,41)(13,42)(14,36)(22,35)(23,29)(24,30)(25,31)(26,32)(27,33)(28,34), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42), (1,17)(2,18)(3,19)(4,20)(5,21)(6,15)(7,16)(8,37)(9,38)(10,39)(11,40)(12,41)(13,42)(14,36), (8,37)(9,38)(10,39)(11,40)(12,41)(13,42)(14,36)(22,35)(23,29)(24,30)(25,31)(26,32)(27,33)(28,34), (1,39,25)(2,40,26)(3,41,27)(4,42,28)(5,36,22)(6,37,23)(7,38,24)(8,29,15)(9,30,16)(10,31,17)(11,32,18)(12,33,19)(13,34,20)(14,35,21), (1,17)(2,16)(3,15)(4,21)(5,20)(6,19)(7,18)(8,27)(9,26)(10,25)(11,24)(12,23)(13,22)(14,28)(29,41)(30,40)(31,39)(32,38)(33,37)(34,36)(35,42) );
G=PermutationGroup([[(1,17),(2,18),(3,19),(4,20),(5,21),(6,15),(7,16),(8,37),(9,38),(10,39),(11,40),(12,41),(13,42),(14,36),(22,35),(23,29),(24,30),(25,31),(26,32),(27,33),(28,34)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35),(36,37,38,39,40,41,42)], [(1,17),(2,18),(3,19),(4,20),(5,21),(6,15),(7,16),(8,37),(9,38),(10,39),(11,40),(12,41),(13,42),(14,36)], [(8,37),(9,38),(10,39),(11,40),(12,41),(13,42),(14,36),(22,35),(23,29),(24,30),(25,31),(26,32),(27,33),(28,34)], [(1,39,25),(2,40,26),(3,41,27),(4,42,28),(5,36,22),(6,37,23),(7,38,24),(8,29,15),(9,30,16),(10,31,17),(11,32,18),(12,33,19),(13,34,20),(14,35,21)], [(1,17),(2,16),(3,15),(4,21),(5,20),(6,19),(7,18),(8,27),(9,26),(10,25),(11,24),(12,23),(13,22),(14,28),(29,41),(30,40),(31,39),(32,38),(33,37),(34,36),(35,42)]])
34 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 3 | 4A | 4B | 6 | 7A | 7B | 7C | 14A | 14B | 14C | 14D | ··· | 14I | 21A | ··· | 21F | 42A | ··· | 42F |
order | 1 | 2 | 2 | 2 | 2 | 2 | 3 | 4 | 4 | 6 | 7 | 7 | 7 | 14 | 14 | 14 | 14 | ··· | 14 | 21 | ··· | 21 | 42 | ··· | 42 |
size | 1 | 1 | 3 | 3 | 42 | 42 | 8 | 42 | 42 | 8 | 2 | 2 | 2 | 2 | 2 | 2 | 6 | ··· | 6 | 8 | ··· | 8 | 8 | ··· | 8 |
34 irreducible representations
dim | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 6 | 6 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + |
image | C1 | C2 | C2 | S3 | D6 | D7 | D14 | D21 | D42 | S4 | C2×S4 | C7⋊S4 | C2×C7⋊S4 |
kernel | C2×C7⋊S4 | C7⋊S4 | A4×C14 | C22×C14 | C2×C14 | C2×A4 | A4 | C23 | C22 | C14 | C7 | C2 | C1 |
# reps | 1 | 2 | 1 | 1 | 1 | 3 | 3 | 6 | 6 | 2 | 2 | 3 | 3 |
Matrix representation of C2×C7⋊S4 ►in GL5(𝔽337)
336 | 0 | 0 | 0 | 0 |
0 | 336 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
336 | 336 | 0 | 0 | 0 |
145 | 144 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 336 | 0 | 0 |
0 | 0 | 1 | 1 | 0 |
0 | 0 | 0 | 0 | 336 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 336 | 0 | 0 |
0 | 0 | 0 | 336 | 0 |
0 | 0 | 336 | 0 | 1 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 335 |
0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 336 | 336 |
0 | 228 | 0 | 0 | 0 |
34 | 0 | 0 | 0 | 0 |
0 | 0 | 336 | 335 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 336 | 336 |
G:=sub<GL(5,GF(337))| [336,0,0,0,0,0,336,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[336,145,0,0,0,336,144,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,1,0,0,0,0,0,336,1,0,0,0,0,1,0,0,0,0,0,336],[1,0,0,0,0,0,1,0,0,0,0,0,336,0,336,0,0,0,336,0,0,0,0,0,1],[1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,336,0,0,335,1,336],[0,34,0,0,0,228,0,0,0,0,0,0,336,0,0,0,0,335,1,336,0,0,0,0,336] >;
C2×C7⋊S4 in GAP, Magma, Sage, TeX
C_2\times C_7\rtimes S_4
% in TeX
G:=Group("C2xC7:S4");
// GroupNames label
G:=SmallGroup(336,215);
// by ID
G=gap.SmallGroup(336,215);
# by ID
G:=PCGroup([6,-2,-2,-3,-7,-2,2,146,1731,5044,1276,3029,2285]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^7=c^2=d^2=e^3=f^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,b*e=e*b,f*b*f=b^-1,e*c*e^-1=f*c*f=c*d=d*c,e*d*e^-1=c,d*f=f*d,f*e*f=e^-1>;
// generators/relations