extension | φ:Q→Aut N | d | ρ | Label | ID |
(C2×C14)⋊D6 = D7×S4 | φ: D6/C1 → D6 ⊆ Aut C2×C14 | 28 | 6+ | (C2xC14):D6 | 336,212 |
(C2×C14)⋊2D6 = C14×S4 | φ: D6/C2 → S3 ⊆ Aut C2×C14 | 42 | 3 | (C2xC14):2D6 | 336,214 |
(C2×C14)⋊3D6 = C2×C7⋊S4 | φ: D6/C2 → S3 ⊆ Aut C2×C14 | 42 | 6+ | (C2xC14):3D6 | 336,215 |
(C2×C14)⋊4D6 = D7×C3⋊D4 | φ: D6/C3 → C22 ⊆ Aut C2×C14 | 84 | 4 | (C2xC14):4D6 | 336,161 |
(C2×C14)⋊5D6 = D6⋊D14 | φ: D6/C3 → C22 ⊆ Aut C2×C14 | 84 | 4+ | (C2xC14):5D6 | 336,163 |
(C2×C14)⋊6D6 = D4×D21 | φ: D6/C3 → C22 ⊆ Aut C2×C14 | 84 | 4+ | (C2xC14):6D6 | 336,198 |
(C2×C14)⋊7D6 = S3×C7×D4 | φ: D6/S3 → C2 ⊆ Aut C2×C14 | 84 | 4 | (C2xC14):7D6 | 336,188 |
(C2×C14)⋊8D6 = S3×C7⋊D4 | φ: D6/S3 → C2 ⊆ Aut C2×C14 | 84 | 4 | (C2xC14):8D6 | 336,162 |
(C2×C14)⋊9D6 = C22×S3×D7 | φ: D6/S3 → C2 ⊆ Aut C2×C14 | 84 | | (C2xC14):9D6 | 336,219 |
(C2×C14)⋊10D6 = C14×C3⋊D4 | φ: D6/C6 → C2 ⊆ Aut C2×C14 | 168 | | (C2xC14):10D6 | 336,193 |
(C2×C14)⋊11D6 = C2×C21⋊7D4 | φ: D6/C6 → C2 ⊆ Aut C2×C14 | 168 | | (C2xC14):11D6 | 336,203 |
(C2×C14)⋊12D6 = C23×D21 | φ: D6/C6 → C2 ⊆ Aut C2×C14 | 168 | | (C2xC14):12D6 | 336,227 |
extension | φ:Q→Aut N | d | ρ | Label | ID |
(C2×C14).1D6 = C42.C23 | φ: D6/C3 → C22 ⊆ Aut C2×C14 | 168 | 4- | (C2xC14).1D6 | 336,153 |
(C2×C14).2D6 = Dic3.D14 | φ: D6/C3 → C22 ⊆ Aut C2×C14 | 168 | 4 | (C2xC14).2D6 | 336,155 |
(C2×C14).3D6 = D4⋊2D21 | φ: D6/C3 → C22 ⊆ Aut C2×C14 | 168 | 4- | (C2xC14).3D6 | 336,199 |
(C2×C14).4D6 = C7×D4⋊2S3 | φ: D6/S3 → C2 ⊆ Aut C2×C14 | 168 | 4 | (C2xC14).4D6 | 336,189 |
(C2×C14).5D6 = Dic3×Dic7 | φ: D6/S3 → C2 ⊆ Aut C2×C14 | 336 | | (C2xC14).5D6 | 336,41 |
(C2×C14).6D6 = D14⋊Dic3 | φ: D6/S3 → C2 ⊆ Aut C2×C14 | 168 | | (C2xC14).6D6 | 336,42 |
(C2×C14).7D6 = D6⋊Dic7 | φ: D6/S3 → C2 ⊆ Aut C2×C14 | 168 | | (C2xC14).7D6 | 336,43 |
(C2×C14).8D6 = D42⋊C4 | φ: D6/S3 → C2 ⊆ Aut C2×C14 | 168 | | (C2xC14).8D6 | 336,44 |
(C2×C14).9D6 = C42.Q8 | φ: D6/S3 → C2 ⊆ Aut C2×C14 | 336 | | (C2xC14).9D6 | 336,45 |
(C2×C14).10D6 = Dic21⋊C4 | φ: D6/S3 → C2 ⊆ Aut C2×C14 | 336 | | (C2xC14).10D6 | 336,46 |
(C2×C14).11D6 = C14.Dic6 | φ: D6/S3 → C2 ⊆ Aut C2×C14 | 336 | | (C2xC14).11D6 | 336,47 |
(C2×C14).12D6 = C2×Dic3×D7 | φ: D6/S3 → C2 ⊆ Aut C2×C14 | 168 | | (C2xC14).12D6 | 336,151 |
(C2×C14).13D6 = Dic7.D6 | φ: D6/S3 → C2 ⊆ Aut C2×C14 | 168 | 4 | (C2xC14).13D6 | 336,152 |
(C2×C14).14D6 = C2×S3×Dic7 | φ: D6/S3 → C2 ⊆ Aut C2×C14 | 168 | | (C2xC14).14D6 | 336,154 |
(C2×C14).15D6 = C2×D21⋊C4 | φ: D6/S3 → C2 ⊆ Aut C2×C14 | 168 | | (C2xC14).15D6 | 336,156 |
(C2×C14).16D6 = C2×C21⋊D4 | φ: D6/S3 → C2 ⊆ Aut C2×C14 | 168 | | (C2xC14).16D6 | 336,157 |
(C2×C14).17D6 = C2×C3⋊D28 | φ: D6/S3 → C2 ⊆ Aut C2×C14 | 168 | | (C2xC14).17D6 | 336,158 |
(C2×C14).18D6 = C2×C7⋊D12 | φ: D6/S3 → C2 ⊆ Aut C2×C14 | 168 | | (C2xC14).18D6 | 336,159 |
(C2×C14).19D6 = C2×C21⋊Q8 | φ: D6/S3 → C2 ⊆ Aut C2×C14 | 336 | | (C2xC14).19D6 | 336,160 |
(C2×C14).20D6 = C7×C4○D12 | φ: D6/C6 → C2 ⊆ Aut C2×C14 | 168 | 2 | (C2xC14).20D6 | 336,187 |
(C2×C14).21D6 = C4×Dic21 | φ: D6/C6 → C2 ⊆ Aut C2×C14 | 336 | | (C2xC14).21D6 | 336,97 |
(C2×C14).22D6 = C42.4Q8 | φ: D6/C6 → C2 ⊆ Aut C2×C14 | 336 | | (C2xC14).22D6 | 336,98 |
(C2×C14).23D6 = C84⋊C4 | φ: D6/C6 → C2 ⊆ Aut C2×C14 | 336 | | (C2xC14).23D6 | 336,99 |
(C2×C14).24D6 = C2.D84 | φ: D6/C6 → C2 ⊆ Aut C2×C14 | 168 | | (C2xC14).24D6 | 336,100 |
(C2×C14).25D6 = C42.38D4 | φ: D6/C6 → C2 ⊆ Aut C2×C14 | 168 | | (C2xC14).25D6 | 336,105 |
(C2×C14).26D6 = C2×Dic42 | φ: D6/C6 → C2 ⊆ Aut C2×C14 | 336 | | (C2xC14).26D6 | 336,194 |
(C2×C14).27D6 = C2×C4×D21 | φ: D6/C6 → C2 ⊆ Aut C2×C14 | 168 | | (C2xC14).27D6 | 336,195 |
(C2×C14).28D6 = C2×D84 | φ: D6/C6 → C2 ⊆ Aut C2×C14 | 168 | | (C2xC14).28D6 | 336,196 |
(C2×C14).29D6 = D84⋊11C2 | φ: D6/C6 → C2 ⊆ Aut C2×C14 | 168 | 2 | (C2xC14).29D6 | 336,197 |
(C2×C14).30D6 = C22×Dic21 | φ: D6/C6 → C2 ⊆ Aut C2×C14 | 336 | | (C2xC14).30D6 | 336,202 |
(C2×C14).31D6 = Dic3×C28 | central extension (φ=1) | 336 | | (C2xC14).31D6 | 336,81 |
(C2×C14).32D6 = C7×Dic3⋊C4 | central extension (φ=1) | 336 | | (C2xC14).32D6 | 336,82 |
(C2×C14).33D6 = C7×C4⋊Dic3 | central extension (φ=1) | 336 | | (C2xC14).33D6 | 336,83 |
(C2×C14).34D6 = C7×D6⋊C4 | central extension (φ=1) | 168 | | (C2xC14).34D6 | 336,84 |
(C2×C14).35D6 = C7×C6.D4 | central extension (φ=1) | 168 | | (C2xC14).35D6 | 336,89 |
(C2×C14).36D6 = C14×Dic6 | central extension (φ=1) | 336 | | (C2xC14).36D6 | 336,184 |
(C2×C14).37D6 = S3×C2×C28 | central extension (φ=1) | 168 | | (C2xC14).37D6 | 336,185 |
(C2×C14).38D6 = C14×D12 | central extension (φ=1) | 168 | | (C2xC14).38D6 | 336,186 |
(C2×C14).39D6 = Dic3×C2×C14 | central extension (φ=1) | 336 | | (C2xC14).39D6 | 336,192 |