extension | φ:Q→Aut N | d | ρ | Label | ID |
(C3×C18)⋊1S3 = C2×C32⋊C18 | φ: S3/C1 → S3 ⊆ Aut C3×C18 | 36 | 6 | (C3xC18):1S3 | 324,62 |
(C3×C18)⋊2S3 = C2×He3.C6 | φ: S3/C1 → S3 ⊆ Aut C3×C18 | 54 | 3 | (C3xC18):2S3 | 324,70 |
(C3×C18)⋊3S3 = C2×He3.2C6 | φ: S3/C1 → S3 ⊆ Aut C3×C18 | 54 | 3 | (C3xC18):3S3 | 324,72 |
(C3×C18)⋊4S3 = C2×C32⋊2D9 | φ: S3/C1 → S3 ⊆ Aut C3×C18 | 36 | 6 | (C3xC18):4S3 | 324,75 |
(C3×C18)⋊5S3 = C2×He3.3S3 | φ: S3/C1 → S3 ⊆ Aut C3×C18 | 54 | 6+ | (C3xC18):5S3 | 324,78 |
(C3×C18)⋊6S3 = C2×He3⋊S3 | φ: S3/C1 → S3 ⊆ Aut C3×C18 | 54 | 6+ | (C3xC18):6S3 | 324,79 |
(C3×C18)⋊7S3 = C2×He3.4S3 | φ: S3/C1 → S3 ⊆ Aut C3×C18 | 54 | 6+ | (C3xC18):7S3 | 324,147 |
(C3×C18)⋊8S3 = C2×He3.4C6 | φ: S3/C1 → S3 ⊆ Aut C3×C18 | 54 | 3 | (C3xC18):8S3 | 324,148 |
(C3×C18)⋊9S3 = C18×C3⋊S3 | φ: S3/C3 → C2 ⊆ Aut C3×C18 | 108 | | (C3xC18):9S3 | 324,143 |
(C3×C18)⋊10S3 = C6×C9⋊S3 | φ: S3/C3 → C2 ⊆ Aut C3×C18 | 108 | | (C3xC18):10S3 | 324,142 |
(C3×C18)⋊11S3 = C2×C32⋊4D9 | φ: S3/C3 → C2 ⊆ Aut C3×C18 | 162 | | (C3xC18):11S3 | 324,149 |
extension | φ:Q→Aut N | d | ρ | Label | ID |
(C3×C18).1S3 = C32⋊C36 | φ: S3/C1 → S3 ⊆ Aut C3×C18 | 36 | 6 | (C3xC18).1S3 | 324,7 |
(C3×C18).2S3 = C9⋊C36 | φ: S3/C1 → S3 ⊆ Aut C3×C18 | 36 | 6 | (C3xC18).2S3 | 324,9 |
(C3×C18).3S3 = He3.C12 | φ: S3/C1 → S3 ⊆ Aut C3×C18 | 108 | 3 | (C3xC18).3S3 | 324,15 |
(C3×C18).4S3 = He3.2C12 | φ: S3/C1 → S3 ⊆ Aut C3×C18 | 108 | 3 | (C3xC18).4S3 | 324,17 |
(C3×C18).5S3 = C2×C9⋊C18 | φ: S3/C1 → S3 ⊆ Aut C3×C18 | 36 | 6 | (C3xC18).5S3 | 324,64 |
(C3×C18).6S3 = C32⋊2Dic9 | φ: S3/C1 → S3 ⊆ Aut C3×C18 | 36 | 6 | (C3xC18).6S3 | 324,20 |
(C3×C18).7S3 = He3.3Dic3 | φ: S3/C1 → S3 ⊆ Aut C3×C18 | 108 | 6- | (C3xC18).7S3 | 324,23 |
(C3×C18).8S3 = He3⋊Dic3 | φ: S3/C1 → S3 ⊆ Aut C3×C18 | 108 | 6- | (C3xC18).8S3 | 324,24 |
(C3×C18).9S3 = 3- 1+2.Dic3 | φ: S3/C1 → S3 ⊆ Aut C3×C18 | 108 | 6- | (C3xC18).9S3 | 324,25 |
(C3×C18).10S3 = C2×3- 1+2.S3 | φ: S3/C1 → S3 ⊆ Aut C3×C18 | 54 | 6+ | (C3xC18).10S3 | 324,80 |
(C3×C18).11S3 = C27⋊C12 | φ: S3/C1 → S3 ⊆ Aut C3×C18 | 108 | 6- | (C3xC18).11S3 | 324,12 |
(C3×C18).12S3 = C2×C27⋊C6 | φ: S3/C1 → S3 ⊆ Aut C3×C18 | 54 | 6+ | (C3xC18).12S3 | 324,67 |
(C3×C18).13S3 = He3.4Dic3 | φ: S3/C1 → S3 ⊆ Aut C3×C18 | 108 | 6- | (C3xC18).13S3 | 324,101 |
(C3×C18).14S3 = He3.5C12 | φ: S3/C1 → S3 ⊆ Aut C3×C18 | 108 | 3 | (C3xC18).14S3 | 324,102 |
(C3×C18).15S3 = C9×Dic9 | φ: S3/C3 → C2 ⊆ Aut C3×C18 | 36 | 2 | (C3xC18).15S3 | 324,6 |
(C3×C18).16S3 = D9×C18 | φ: S3/C3 → C2 ⊆ Aut C3×C18 | 36 | 2 | (C3xC18).16S3 | 324,61 |
(C3×C18).17S3 = C9×C3⋊Dic3 | φ: S3/C3 → C2 ⊆ Aut C3×C18 | 108 | | (C3xC18).17S3 | 324,97 |
(C3×C18).18S3 = C3×Dic27 | φ: S3/C3 → C2 ⊆ Aut C3×C18 | 108 | 2 | (C3xC18).18S3 | 324,10 |
(C3×C18).19S3 = C9⋊Dic9 | φ: S3/C3 → C2 ⊆ Aut C3×C18 | 324 | | (C3xC18).19S3 | 324,19 |
(C3×C18).20S3 = C27⋊Dic3 | φ: S3/C3 → C2 ⊆ Aut C3×C18 | 324 | | (C3xC18).20S3 | 324,21 |
(C3×C18).21S3 = C6×D27 | φ: S3/C3 → C2 ⊆ Aut C3×C18 | 108 | 2 | (C3xC18).21S3 | 324,65 |
(C3×C18).22S3 = C2×C9⋊D9 | φ: S3/C3 → C2 ⊆ Aut C3×C18 | 162 | | (C3xC18).22S3 | 324,74 |
(C3×C18).23S3 = C2×C27⋊S3 | φ: S3/C3 → C2 ⊆ Aut C3×C18 | 162 | | (C3xC18).23S3 | 324,76 |
(C3×C18).24S3 = C3×C9⋊Dic3 | φ: S3/C3 → C2 ⊆ Aut C3×C18 | 108 | | (C3xC18).24S3 | 324,96 |
(C3×C18).25S3 = C32⋊5Dic9 | φ: S3/C3 → C2 ⊆ Aut C3×C18 | 324 | | (C3xC18).25S3 | 324,103 |
(C3×C18).26S3 = Dic3×C3×C9 | central extension (φ=1) | 108 | | (C3xC18).26S3 | 324,91 |