extension | φ:Q→Aut N | d | ρ | Label | ID |
(C3×C9)⋊1D6 = C32⋊D18 | φ: D6/C1 → D6 ⊆ Aut C3×C9 | 18 | 12+ | (C3xC9):1D6 | 324,37 |
(C3×C9)⋊2D6 = He3.D6 | φ: D6/C1 → D6 ⊆ Aut C3×C9 | 27 | 6+ | (C3xC9):2D6 | 324,40 |
(C3×C9)⋊3D6 = He3.2D6 | φ: D6/C1 → D6 ⊆ Aut C3×C9 | 27 | 6+ | (C3xC9):3D6 | 324,41 |
(C3×C9)⋊4D6 = He3.6D6 | φ: D6/C1 → D6 ⊆ Aut C3×C9 | 27 | 6+ | (C3xC9):4D6 | 324,125 |
(C3×C9)⋊5D6 = C2×C32⋊C18 | φ: D6/C2 → S3 ⊆ Aut C3×C9 | 36 | 6 | (C3xC9):5D6 | 324,62 |
(C3×C9)⋊6D6 = C2×He3.C6 | φ: D6/C2 → S3 ⊆ Aut C3×C9 | 54 | 3 | (C3xC9):6D6 | 324,70 |
(C3×C9)⋊7D6 = C2×He3.2C6 | φ: D6/C2 → S3 ⊆ Aut C3×C9 | 54 | 3 | (C3xC9):7D6 | 324,72 |
(C3×C9)⋊8D6 = C2×C32⋊2D9 | φ: D6/C2 → S3 ⊆ Aut C3×C9 | 36 | 6 | (C3xC9):8D6 | 324,75 |
(C3×C9)⋊9D6 = C2×He3.3S3 | φ: D6/C2 → S3 ⊆ Aut C3×C9 | 54 | 6+ | (C3xC9):9D6 | 324,78 |
(C3×C9)⋊10D6 = C2×He3⋊S3 | φ: D6/C2 → S3 ⊆ Aut C3×C9 | 54 | 6+ | (C3xC9):10D6 | 324,79 |
(C3×C9)⋊11D6 = C2×He3.4S3 | φ: D6/C2 → S3 ⊆ Aut C3×C9 | 54 | 6+ | (C3xC9):11D6 | 324,147 |
(C3×C9)⋊12D6 = C2×He3.4C6 | φ: D6/C2 → S3 ⊆ Aut C3×C9 | 54 | 3 | (C3xC9):12D6 | 324,148 |
(C3×C9)⋊13D6 = D9×C3⋊S3 | φ: D6/C3 → C22 ⊆ Aut C3×C9 | 54 | | (C3xC9):13D6 | 324,119 |
(C3×C9)⋊14D6 = C32⋊5D18 | φ: D6/C3 → C22 ⊆ Aut C3×C9 | 36 | 4 | (C3xC9):14D6 | 324,123 |
(C3×C9)⋊15D6 = S32×C9 | φ: D6/S3 → C2 ⊆ Aut C3×C9 | 36 | 4 | (C3xC9):15D6 | 324,115 |
(C3×C9)⋊16D6 = C3×S3×D9 | φ: D6/S3 → C2 ⊆ Aut C3×C9 | 36 | 4 | (C3xC9):16D6 | 324,114 |
(C3×C9)⋊17D6 = S3×C9⋊S3 | φ: D6/S3 → C2 ⊆ Aut C3×C9 | 54 | | (C3xC9):17D6 | 324,120 |
(C3×C9)⋊18D6 = C18×C3⋊S3 | φ: D6/C6 → C2 ⊆ Aut C3×C9 | 108 | | (C3xC9):18D6 | 324,143 |
(C3×C9)⋊19D6 = C6×C9⋊S3 | φ: D6/C6 → C2 ⊆ Aut C3×C9 | 108 | | (C3xC9):19D6 | 324,142 |
(C3×C9)⋊20D6 = C2×C32⋊4D9 | φ: D6/C6 → C2 ⊆ Aut C3×C9 | 162 | | (C3xC9):20D6 | 324,149 |