extension | φ:Q→Aut N | d | ρ | Label | ID |
(C3×C6).1D10 = Dic3×D15 | φ: D10/C5 → C22 ⊆ Aut C3×C6 | 120 | 4- | (C3xC6).1D10 | 360,77 |
(C3×C6).2D10 = S3×Dic15 | φ: D10/C5 → C22 ⊆ Aut C3×C6 | 120 | 4- | (C3xC6).2D10 | 360,78 |
(C3×C6).3D10 = C6.D30 | φ: D10/C5 → C22 ⊆ Aut C3×C6 | 60 | 4+ | (C3xC6).3D10 | 360,79 |
(C3×C6).4D10 = D6⋊D15 | φ: D10/C5 → C22 ⊆ Aut C3×C6 | 120 | 4- | (C3xC6).4D10 | 360,80 |
(C3×C6).5D10 = C3⋊D60 | φ: D10/C5 → C22 ⊆ Aut C3×C6 | 60 | 4+ | (C3xC6).5D10 | 360,81 |
(C3×C6).6D10 = D6⋊2D15 | φ: D10/C5 → C22 ⊆ Aut C3×C6 | 60 | 4+ | (C3xC6).6D10 | 360,82 |
(C3×C6).7D10 = C3⋊Dic30 | φ: D10/C5 → C22 ⊆ Aut C3×C6 | 120 | 4- | (C3xC6).7D10 | 360,83 |
(C3×C6).8D10 = D30.S3 | φ: D10/C5 → C22 ⊆ Aut C3×C6 | 120 | 4 | (C3xC6).8D10 | 360,84 |
(C3×C6).9D10 = Dic15⋊S3 | φ: D10/C5 → C22 ⊆ Aut C3×C6 | 60 | 4 | (C3xC6).9D10 | 360,85 |
(C3×C6).10D10 = D30⋊S3 | φ: D10/C5 → C22 ⊆ Aut C3×C6 | 60 | 4 | (C3xC6).10D10 | 360,86 |
(C3×C6).11D10 = C32⋊3D20 | φ: D10/C5 → C22 ⊆ Aut C3×C6 | 120 | 4 | (C3xC6).11D10 | 360,87 |
(C3×C6).12D10 = C32⋊3Dic10 | φ: D10/C5 → C22 ⊆ Aut C3×C6 | 120 | 4 | (C3xC6).12D10 | 360,88 |
(C3×C6).13D10 = C3×D5×Dic3 | φ: D10/D5 → C2 ⊆ Aut C3×C6 | 60 | 4 | (C3xC6).13D10 | 360,58 |
(C3×C6).14D10 = C3×S3×Dic5 | φ: D10/D5 → C2 ⊆ Aut C3×C6 | 120 | 4 | (C3xC6).14D10 | 360,59 |
(C3×C6).15D10 = C3×D30.C2 | φ: D10/D5 → C2 ⊆ Aut C3×C6 | 120 | 4 | (C3xC6).15D10 | 360,60 |
(C3×C6).16D10 = C3×C15⋊D4 | φ: D10/D5 → C2 ⊆ Aut C3×C6 | 60 | 4 | (C3xC6).16D10 | 360,61 |
(C3×C6).17D10 = C3×C3⋊D20 | φ: D10/D5 → C2 ⊆ Aut C3×C6 | 60 | 4 | (C3xC6).17D10 | 360,62 |
(C3×C6).18D10 = C3×C5⋊D12 | φ: D10/D5 → C2 ⊆ Aut C3×C6 | 120 | 4 | (C3xC6).18D10 | 360,63 |
(C3×C6).19D10 = C3×C15⋊Q8 | φ: D10/D5 → C2 ⊆ Aut C3×C6 | 120 | 4 | (C3xC6).19D10 | 360,64 |
(C3×C6).20D10 = D5×C3⋊Dic3 | φ: D10/D5 → C2 ⊆ Aut C3×C6 | 180 | | (C3xC6).20D10 | 360,65 |
(C3×C6).21D10 = C3⋊S3×Dic5 | φ: D10/D5 → C2 ⊆ Aut C3×C6 | 180 | | (C3xC6).21D10 | 360,66 |
(C3×C6).22D10 = C30.D6 | φ: D10/D5 → C2 ⊆ Aut C3×C6 | 180 | | (C3xC6).22D10 | 360,67 |
(C3×C6).23D10 = C30.12D6 | φ: D10/D5 → C2 ⊆ Aut C3×C6 | 180 | | (C3xC6).23D10 | 360,68 |
(C3×C6).24D10 = C32⋊7D20 | φ: D10/D5 → C2 ⊆ Aut C3×C6 | 180 | | (C3xC6).24D10 | 360,69 |
(C3×C6).25D10 = C15⋊D12 | φ: D10/D5 → C2 ⊆ Aut C3×C6 | 180 | | (C3xC6).25D10 | 360,70 |
(C3×C6).26D10 = C15⋊Dic6 | φ: D10/D5 → C2 ⊆ Aut C3×C6 | 360 | | (C3xC6).26D10 | 360,71 |
(C3×C6).27D10 = C3×Dic30 | φ: D10/C10 → C2 ⊆ Aut C3×C6 | 120 | 2 | (C3xC6).27D10 | 360,100 |
(C3×C6).28D10 = C12×D15 | φ: D10/C10 → C2 ⊆ Aut C3×C6 | 120 | 2 | (C3xC6).28D10 | 360,101 |
(C3×C6).29D10 = C3×D60 | φ: D10/C10 → C2 ⊆ Aut C3×C6 | 120 | 2 | (C3xC6).29D10 | 360,102 |
(C3×C6).30D10 = C6×Dic15 | φ: D10/C10 → C2 ⊆ Aut C3×C6 | 120 | | (C3xC6).30D10 | 360,103 |
(C3×C6).31D10 = C3×C15⋊7D4 | φ: D10/C10 → C2 ⊆ Aut C3×C6 | 60 | 2 | (C3xC6).31D10 | 360,104 |
(C3×C6).32D10 = C12.D15 | φ: D10/C10 → C2 ⊆ Aut C3×C6 | 360 | | (C3xC6).32D10 | 360,110 |
(C3×C6).33D10 = C4×C3⋊D15 | φ: D10/C10 → C2 ⊆ Aut C3×C6 | 180 | | (C3xC6).33D10 | 360,111 |
(C3×C6).34D10 = C60⋊S3 | φ: D10/C10 → C2 ⊆ Aut C3×C6 | 180 | | (C3xC6).34D10 | 360,112 |
(C3×C6).35D10 = C2×C3⋊Dic15 | φ: D10/C10 → C2 ⊆ Aut C3×C6 | 360 | | (C3xC6).35D10 | 360,113 |
(C3×C6).36D10 = C62⋊D5 | φ: D10/C10 → C2 ⊆ Aut C3×C6 | 180 | | (C3xC6).36D10 | 360,114 |
(C3×C6).37D10 = C32×Dic10 | central extension (φ=1) | 360 | | (C3xC6).37D10 | 360,90 |
(C3×C6).38D10 = D5×C3×C12 | central extension (φ=1) | 180 | | (C3xC6).38D10 | 360,91 |
(C3×C6).39D10 = C32×D20 | central extension (φ=1) | 180 | | (C3xC6).39D10 | 360,92 |
(C3×C6).40D10 = C3×C6×Dic5 | central extension (φ=1) | 360 | | (C3xC6).40D10 | 360,93 |
(C3×C6).41D10 = C32×C5⋊D4 | central extension (φ=1) | 180 | | (C3xC6).41D10 | 360,94 |