Copied to
clipboard

G = S3×D35order 420 = 22·3·5·7

Direct product of S3 and D35

direct product, metabelian, supersoluble, monomial, A-group, 2-hyperelementary

Aliases: S3×D35, C354D6, C31D70, C152D14, C212D10, D1051C2, C1051C22, (C5×S3)⋊D7, (S3×C7)⋊D5, C71(S3×D5), C51(S3×D7), (S3×C35)⋊1C2, (C3×D35)⋊1C2, SmallGroup(420,29)

Series: Derived Chief Lower central Upper central

C1C105 — S3×D35
C1C7C35C105C3×D35 — S3×D35
C105 — S3×D35
C1

Generators and relations for S3×D35
 G = < a,b,c,d | a3=b2=c35=d2=1, bab=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd=c-1 >

3C2
35C2
105C2
105C22
35S3
35C6
3C10
7D5
21D5
3C14
5D7
15D7
35D6
21D10
15D14
7D15
7C3×D5
5D21
5C3×D7
3C70
3D35
7S3×D5
5S3×D7
3D70

Smallest permutation representation of S3×D35
On 105 points
Generators in S105
(1 63 103)(2 64 104)(3 65 105)(4 66 71)(5 67 72)(6 68 73)(7 69 74)(8 70 75)(9 36 76)(10 37 77)(11 38 78)(12 39 79)(13 40 80)(14 41 81)(15 42 82)(16 43 83)(17 44 84)(18 45 85)(19 46 86)(20 47 87)(21 48 88)(22 49 89)(23 50 90)(24 51 91)(25 52 92)(26 53 93)(27 54 94)(28 55 95)(29 56 96)(30 57 97)(31 58 98)(32 59 99)(33 60 100)(34 61 101)(35 62 102)
(36 76)(37 77)(38 78)(39 79)(40 80)(41 81)(42 82)(43 83)(44 84)(45 85)(46 86)(47 87)(48 88)(49 89)(50 90)(51 91)(52 92)(53 93)(54 94)(55 95)(56 96)(57 97)(58 98)(59 99)(60 100)(61 101)(62 102)(63 103)(64 104)(65 105)(66 71)(67 72)(68 73)(69 74)(70 75)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35)(36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105)
(1 35)(2 34)(3 33)(4 32)(5 31)(6 30)(7 29)(8 28)(9 27)(10 26)(11 25)(12 24)(13 23)(14 22)(15 21)(16 20)(17 19)(36 54)(37 53)(38 52)(39 51)(40 50)(41 49)(42 48)(43 47)(44 46)(55 70)(56 69)(57 68)(58 67)(59 66)(60 65)(61 64)(62 63)(71 99)(72 98)(73 97)(74 96)(75 95)(76 94)(77 93)(78 92)(79 91)(80 90)(81 89)(82 88)(83 87)(84 86)(100 105)(101 104)(102 103)

G:=sub<Sym(105)| (1,63,103)(2,64,104)(3,65,105)(4,66,71)(5,67,72)(6,68,73)(7,69,74)(8,70,75)(9,36,76)(10,37,77)(11,38,78)(12,39,79)(13,40,80)(14,41,81)(15,42,82)(16,43,83)(17,44,84)(18,45,85)(19,46,86)(20,47,87)(21,48,88)(22,49,89)(23,50,90)(24,51,91)(25,52,92)(26,53,93)(27,54,94)(28,55,95)(29,56,96)(30,57,97)(31,58,98)(32,59,99)(33,60,100)(34,61,101)(35,62,102), (36,76)(37,77)(38,78)(39,79)(40,80)(41,81)(42,82)(43,83)(44,84)(45,85)(46,86)(47,87)(48,88)(49,89)(50,90)(51,91)(52,92)(53,93)(54,94)(55,95)(56,96)(57,97)(58,98)(59,99)(60,100)(61,101)(62,102)(63,103)(64,104)(65,105)(66,71)(67,72)(68,73)(69,74)(70,75), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35)(36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105), (1,35)(2,34)(3,33)(4,32)(5,31)(6,30)(7,29)(8,28)(9,27)(10,26)(11,25)(12,24)(13,23)(14,22)(15,21)(16,20)(17,19)(36,54)(37,53)(38,52)(39,51)(40,50)(41,49)(42,48)(43,47)(44,46)(55,70)(56,69)(57,68)(58,67)(59,66)(60,65)(61,64)(62,63)(71,99)(72,98)(73,97)(74,96)(75,95)(76,94)(77,93)(78,92)(79,91)(80,90)(81,89)(82,88)(83,87)(84,86)(100,105)(101,104)(102,103)>;

G:=Group( (1,63,103)(2,64,104)(3,65,105)(4,66,71)(5,67,72)(6,68,73)(7,69,74)(8,70,75)(9,36,76)(10,37,77)(11,38,78)(12,39,79)(13,40,80)(14,41,81)(15,42,82)(16,43,83)(17,44,84)(18,45,85)(19,46,86)(20,47,87)(21,48,88)(22,49,89)(23,50,90)(24,51,91)(25,52,92)(26,53,93)(27,54,94)(28,55,95)(29,56,96)(30,57,97)(31,58,98)(32,59,99)(33,60,100)(34,61,101)(35,62,102), (36,76)(37,77)(38,78)(39,79)(40,80)(41,81)(42,82)(43,83)(44,84)(45,85)(46,86)(47,87)(48,88)(49,89)(50,90)(51,91)(52,92)(53,93)(54,94)(55,95)(56,96)(57,97)(58,98)(59,99)(60,100)(61,101)(62,102)(63,103)(64,104)(65,105)(66,71)(67,72)(68,73)(69,74)(70,75), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35)(36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105), (1,35)(2,34)(3,33)(4,32)(5,31)(6,30)(7,29)(8,28)(9,27)(10,26)(11,25)(12,24)(13,23)(14,22)(15,21)(16,20)(17,19)(36,54)(37,53)(38,52)(39,51)(40,50)(41,49)(42,48)(43,47)(44,46)(55,70)(56,69)(57,68)(58,67)(59,66)(60,65)(61,64)(62,63)(71,99)(72,98)(73,97)(74,96)(75,95)(76,94)(77,93)(78,92)(79,91)(80,90)(81,89)(82,88)(83,87)(84,86)(100,105)(101,104)(102,103) );

G=PermutationGroup([[(1,63,103),(2,64,104),(3,65,105),(4,66,71),(5,67,72),(6,68,73),(7,69,74),(8,70,75),(9,36,76),(10,37,77),(11,38,78),(12,39,79),(13,40,80),(14,41,81),(15,42,82),(16,43,83),(17,44,84),(18,45,85),(19,46,86),(20,47,87),(21,48,88),(22,49,89),(23,50,90),(24,51,91),(25,52,92),(26,53,93),(27,54,94),(28,55,95),(29,56,96),(30,57,97),(31,58,98),(32,59,99),(33,60,100),(34,61,101),(35,62,102)], [(36,76),(37,77),(38,78),(39,79),(40,80),(41,81),(42,82),(43,83),(44,84),(45,85),(46,86),(47,87),(48,88),(49,89),(50,90),(51,91),(52,92),(53,93),(54,94),(55,95),(56,96),(57,97),(58,98),(59,99),(60,100),(61,101),(62,102),(63,103),(64,104),(65,105),(66,71),(67,72),(68,73),(69,74),(70,75)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35),(36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105)], [(1,35),(2,34),(3,33),(4,32),(5,31),(6,30),(7,29),(8,28),(9,27),(10,26),(11,25),(12,24),(13,23),(14,22),(15,21),(16,20),(17,19),(36,54),(37,53),(38,52),(39,51),(40,50),(41,49),(42,48),(43,47),(44,46),(55,70),(56,69),(57,68),(58,67),(59,66),(60,65),(61,64),(62,63),(71,99),(72,98),(73,97),(74,96),(75,95),(76,94),(77,93),(78,92),(79,91),(80,90),(81,89),(82,88),(83,87),(84,86),(100,105),(101,104),(102,103)]])

57 conjugacy classes

class 1 2A2B2C 3 5A5B 6 7A7B7C10A10B14A14B14C15A15B21A21B21C35A···35L70A···70L105A···105L
order122235567771010141414151521212135···3570···70105···105
size13351052227022266666444442···26···64···4

57 irreducible representations

dim111122222222444
type+++++++++++++++
imageC1C2C2C2S3D5D6D7D10D14D35D70S3×D5S3×D7S3×D35
kernelS3×D35C3×D35S3×C35D105D35S3×C7C35C5×S3C21C15S3C3C7C5C1
# reps111112132312122312

Matrix representation of S3×D35 in GL4(𝔽211) generated by

1000
0100
0020929
00291
,
1000
0100
0010
00182210
,
79900
1932200
0010
0001
,
185600
20919300
0010
0001
G:=sub<GL(4,GF(211))| [1,0,0,0,0,1,0,0,0,0,209,29,0,0,29,1],[1,0,0,0,0,1,0,0,0,0,1,182,0,0,0,210],[79,193,0,0,9,22,0,0,0,0,1,0,0,0,0,1],[18,209,0,0,56,193,0,0,0,0,1,0,0,0,0,1] >;

S3×D35 in GAP, Magma, Sage, TeX

S_3\times D_{35}
% in TeX

G:=Group("S3xD35");
// GroupNames label

G:=SmallGroup(420,29);
// by ID

G=gap.SmallGroup(420,29);
# by ID

G:=PCGroup([5,-2,-2,-3,-5,-7,67,963,9004]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^2=c^35=d^2=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations

Export

Subgroup lattice of S3×D35 in TeX

׿
×
𝔽