Extensions 1→N→G→Q→1 with N=C3×Q8 and Q=C3×S3

Direct product G=N×Q with N=C3×Q8 and Q=C3×S3
dρLabelID
S3×Q8×C32144S3xQ8xC3^2432,706

Semidirect products G=N:Q with N=C3×Q8 and Q=C3×S3
extensionφ:Q→Out NdρLabelID
(C3×Q8)⋊1(C3×S3) = C3×C6.6S4φ: C3×S3/C3S3 ⊆ Out C3×Q8484(C3xQ8):1(C3xS3)432,617
(C3×Q8)⋊2(C3×S3) = C32×GL2(𝔽3)φ: C3×S3/C3S3 ⊆ Out C3×Q872(C3xQ8):2(C3xS3)432,614
(C3×Q8)⋊3(C3×S3) = C3⋊S3×SL2(𝔽3)φ: C3×S3/C3C6 ⊆ Out C3×Q872(C3xQ8):3(C3xS3)432,626
(C3×Q8)⋊4(C3×S3) = C3×S3×SL2(𝔽3)φ: C3×S3/S3C3 ⊆ Out C3×Q8484(C3xQ8):4(C3xS3)432,623
(C3×Q8)⋊5(C3×S3) = C3×C3211SD16φ: C3×S3/C32C2 ⊆ Out C3×Q8144(C3xQ8):5(C3xS3)432,493
(C3×Q8)⋊6(C3×S3) = C3×Q8×C3⋊S3φ: C3×S3/C32C2 ⊆ Out C3×Q8144(C3xQ8):6(C3xS3)432,716
(C3×Q8)⋊7(C3×S3) = C3×C12.26D6φ: C3×S3/C32C2 ⊆ Out C3×Q8144(C3xQ8):7(C3xS3)432,717
(C3×Q8)⋊8(C3×S3) = C32×Q82S3φ: C3×S3/C32C2 ⊆ Out C3×Q8144(C3xQ8):8(C3xS3)432,477
(C3×Q8)⋊9(C3×S3) = C32×Q83S3φ: trivial image144(C3xQ8):9(C3xS3)432,707

Non-split extensions G=N.Q with N=C3×Q8 and Q=C3×S3
extensionφ:Q→Out NdρLabelID
(C3×Q8).1(C3×S3) = C32.CSU2(𝔽3)φ: C3×S3/C3S3 ⊆ Out C3×Q814412-(C3xQ8).1(C3xS3)432,243
(C3×Q8).2(C3×S3) = C3×Q8.D9φ: C3×S3/C3S3 ⊆ Out C3×Q81444(C3xQ8).2(C3xS3)432,244
(C3×Q8).3(C3×S3) = C32.GL2(𝔽3)φ: C3×S3/C3S3 ⊆ Out C3×Q87212+(C3xQ8).3(C3xS3)432,245
(C3×Q8).4(C3×S3) = C3×Q8⋊D9φ: C3×S3/C3S3 ⊆ Out C3×Q81444(C3xQ8).4(C3xS3)432,246
(C3×Q8).5(C3×S3) = C32⋊CSU2(𝔽3)φ: C3×S3/C3S3 ⊆ Out C3×Q814412-(C3xQ8).5(C3xS3)432,247
(C3×Q8).6(C3×S3) = C322GL2(𝔽3)φ: C3×S3/C3S3 ⊆ Out C3×Q87212+(C3xQ8).6(C3xS3)432,248
(C3×Q8).7(C3×S3) = C3×C6.5S4φ: C3×S3/C3S3 ⊆ Out C3×Q8484(C3xQ8).7(C3xS3)432,616
(C3×Q8).8(C3×S3) = C9×CSU2(𝔽3)φ: C3×S3/C3S3 ⊆ Out C3×Q81442(C3xQ8).8(C3xS3)432,240
(C3×Q8).9(C3×S3) = C9×GL2(𝔽3)φ: C3×S3/C3S3 ⊆ Out C3×Q8722(C3xQ8).9(C3xS3)432,241
(C3×Q8).10(C3×S3) = C32×CSU2(𝔽3)φ: C3×S3/C3S3 ⊆ Out C3×Q8144(C3xQ8).10(C3xS3)432,613
(C3×Q8).11(C3×S3) = Dic9.A4φ: C3×S3/C3C6 ⊆ Out C3×Q814412+(C3xQ8).11(C3xS3)432,261
(C3×Q8).12(C3×S3) = Dic9.2A4φ: C3×S3/C3C6 ⊆ Out C3×Q81444+(C3xQ8).12(C3xS3)432,262
(C3×Q8).13(C3×S3) = D18.A4φ: C3×S3/C3C6 ⊆ Out C3×Q87212-(C3xQ8).13(C3xS3)432,263
(C3×Q8).14(C3×S3) = D9×SL2(𝔽3)φ: C3×S3/C3C6 ⊆ Out C3×Q8724-(C3xQ8).14(C3xS3)432,264
(C3×Q8).15(C3×S3) = C6.(S3×A4)φ: C3×S3/C3C6 ⊆ Out C3×Q87212+(C3xQ8).15(C3xS3)432,269
(C3×Q8).16(C3×S3) = Q8⋊He3⋊C2φ: C3×S3/C3C6 ⊆ Out C3×Q87212-(C3xQ8).16(C3xS3)432,270
(C3×Q8).17(C3×S3) = C3⋊Dic3.2A4φ: C3×S3/C3C6 ⊆ Out C3×Q8144(C3xQ8).17(C3xS3)432,625
(C3×Q8).18(C3×S3) = Q8⋊C93S3φ: C3×S3/S3C3 ⊆ Out C3×Q81444(C3xQ8).18(C3xS3)432,267
(C3×Q8).19(C3×S3) = S3×Q8⋊C9φ: C3×S3/S3C3 ⊆ Out C3×Q81444(C3xQ8).19(C3xS3)432,268
(C3×Q8).20(C3×S3) = C3×Dic3.A4φ: C3×S3/S3C3 ⊆ Out C3×Q8484(C3xQ8).20(C3xS3)432,622
(C3×Q8).21(C3×S3) = C3×C9⋊Q16φ: C3×S3/C32C2 ⊆ Out C3×Q81444(C3xQ8).21(C3xS3)432,156
(C3×Q8).22(C3×S3) = C3×Q82D9φ: C3×S3/C32C2 ⊆ Out C3×Q81444(C3xQ8).22(C3xS3)432,157
(C3×Q8).23(C3×S3) = He36Q16φ: C3×S3/C32C2 ⊆ Out C3×Q814412-(C3xQ8).23(C3xS3)432,160
(C3×Q8).24(C3×S3) = He310SD16φ: C3×S3/C32C2 ⊆ Out C3×Q87212+(C3xQ8).24(C3xS3)432,161
(C3×Q8).25(C3×S3) = Dic18.C6φ: C3×S3/C32C2 ⊆ Out C3×Q814412-(C3xQ8).25(C3xS3)432,162
(C3×Q8).26(C3×S3) = D36.C6φ: C3×S3/C32C2 ⊆ Out C3×Q87212+(C3xQ8).26(C3xS3)432,163
(C3×Q8).27(C3×S3) = C3×Q8×D9φ: C3×S3/C32C2 ⊆ Out C3×Q81444(C3xQ8).27(C3xS3)432,364
(C3×Q8).28(C3×S3) = C3×Q83D9φ: C3×S3/C32C2 ⊆ Out C3×Q81444(C3xQ8).28(C3xS3)432,365
(C3×Q8).29(C3×S3) = Q8×C32⋊C6φ: C3×S3/C32C2 ⊆ Out C3×Q87212-(C3xQ8).29(C3xS3)432,368
(C3×Q8).30(C3×S3) = (Q8×He3)⋊C2φ: C3×S3/C32C2 ⊆ Out C3×Q87212+(C3xQ8).30(C3xS3)432,369
(C3×Q8).31(C3×S3) = Q8×C9⋊C6φ: C3×S3/C32C2 ⊆ Out C3×Q87212-(C3xQ8).31(C3xS3)432,370
(C3×Q8).32(C3×S3) = D363C6φ: C3×S3/C32C2 ⊆ Out C3×Q87212+(C3xQ8).32(C3xS3)432,371
(C3×Q8).33(C3×S3) = C3×C327Q16φ: C3×S3/C32C2 ⊆ Out C3×Q8144(C3xQ8).33(C3xS3)432,494
(C3×Q8).34(C3×S3) = C9×Q82S3φ: C3×S3/C32C2 ⊆ Out C3×Q81444(C3xQ8).34(C3xS3)432,158
(C3×Q8).35(C3×S3) = C9×C3⋊Q16φ: C3×S3/C32C2 ⊆ Out C3×Q81444(C3xQ8).35(C3xS3)432,159
(C3×Q8).36(C3×S3) = C32×C3⋊Q16φ: C3×S3/C32C2 ⊆ Out C3×Q8144(C3xQ8).36(C3xS3)432,478
(C3×Q8).37(C3×S3) = S3×Q8×C9φ: trivial image1444(C3xQ8).37(C3xS3)432,366
(C3×Q8).38(C3×S3) = C9×Q83S3φ: trivial image1444(C3xQ8).38(C3xS3)432,367

׿
×
𝔽