extension | φ:Q→Out N | d | ρ | Label | ID |
(C3xQ8).1(C3xS3) = C32.CSU2(F3) | φ: C3xS3/C3 → S3 ⊆ Out C3xQ8 | 144 | 12- | (C3xQ8).1(C3xS3) | 432,243 |
(C3xQ8).2(C3xS3) = C3xQ8.D9 | φ: C3xS3/C3 → S3 ⊆ Out C3xQ8 | 144 | 4 | (C3xQ8).2(C3xS3) | 432,244 |
(C3xQ8).3(C3xS3) = C32.GL2(F3) | φ: C3xS3/C3 → S3 ⊆ Out C3xQ8 | 72 | 12+ | (C3xQ8).3(C3xS3) | 432,245 |
(C3xQ8).4(C3xS3) = C3xQ8:D9 | φ: C3xS3/C3 → S3 ⊆ Out C3xQ8 | 144 | 4 | (C3xQ8).4(C3xS3) | 432,246 |
(C3xQ8).5(C3xS3) = C32:CSU2(F3) | φ: C3xS3/C3 → S3 ⊆ Out C3xQ8 | 144 | 12- | (C3xQ8).5(C3xS3) | 432,247 |
(C3xQ8).6(C3xS3) = C32:2GL2(F3) | φ: C3xS3/C3 → S3 ⊆ Out C3xQ8 | 72 | 12+ | (C3xQ8).6(C3xS3) | 432,248 |
(C3xQ8).7(C3xS3) = C3xC6.5S4 | φ: C3xS3/C3 → S3 ⊆ Out C3xQ8 | 48 | 4 | (C3xQ8).7(C3xS3) | 432,616 |
(C3xQ8).8(C3xS3) = C9xCSU2(F3) | φ: C3xS3/C3 → S3 ⊆ Out C3xQ8 | 144 | 2 | (C3xQ8).8(C3xS3) | 432,240 |
(C3xQ8).9(C3xS3) = C9xGL2(F3) | φ: C3xS3/C3 → S3 ⊆ Out C3xQ8 | 72 | 2 | (C3xQ8).9(C3xS3) | 432,241 |
(C3xQ8).10(C3xS3) = C32xCSU2(F3) | φ: C3xS3/C3 → S3 ⊆ Out C3xQ8 | 144 | | (C3xQ8).10(C3xS3) | 432,613 |
(C3xQ8).11(C3xS3) = Dic9.A4 | φ: C3xS3/C3 → C6 ⊆ Out C3xQ8 | 144 | 12+ | (C3xQ8).11(C3xS3) | 432,261 |
(C3xQ8).12(C3xS3) = Dic9.2A4 | φ: C3xS3/C3 → C6 ⊆ Out C3xQ8 | 144 | 4+ | (C3xQ8).12(C3xS3) | 432,262 |
(C3xQ8).13(C3xS3) = D18.A4 | φ: C3xS3/C3 → C6 ⊆ Out C3xQ8 | 72 | 12- | (C3xQ8).13(C3xS3) | 432,263 |
(C3xQ8).14(C3xS3) = D9xSL2(F3) | φ: C3xS3/C3 → C6 ⊆ Out C3xQ8 | 72 | 4- | (C3xQ8).14(C3xS3) | 432,264 |
(C3xQ8).15(C3xS3) = C6.(S3xA4) | φ: C3xS3/C3 → C6 ⊆ Out C3xQ8 | 72 | 12+ | (C3xQ8).15(C3xS3) | 432,269 |
(C3xQ8).16(C3xS3) = Q8:He3:C2 | φ: C3xS3/C3 → C6 ⊆ Out C3xQ8 | 72 | 12- | (C3xQ8).16(C3xS3) | 432,270 |
(C3xQ8).17(C3xS3) = C3:Dic3.2A4 | φ: C3xS3/C3 → C6 ⊆ Out C3xQ8 | 144 | | (C3xQ8).17(C3xS3) | 432,625 |
(C3xQ8).18(C3xS3) = Q8:C9:3S3 | φ: C3xS3/S3 → C3 ⊆ Out C3xQ8 | 144 | 4 | (C3xQ8).18(C3xS3) | 432,267 |
(C3xQ8).19(C3xS3) = S3xQ8:C9 | φ: C3xS3/S3 → C3 ⊆ Out C3xQ8 | 144 | 4 | (C3xQ8).19(C3xS3) | 432,268 |
(C3xQ8).20(C3xS3) = C3xDic3.A4 | φ: C3xS3/S3 → C3 ⊆ Out C3xQ8 | 48 | 4 | (C3xQ8).20(C3xS3) | 432,622 |
(C3xQ8).21(C3xS3) = C3xC9:Q16 | φ: C3xS3/C32 → C2 ⊆ Out C3xQ8 | 144 | 4 | (C3xQ8).21(C3xS3) | 432,156 |
(C3xQ8).22(C3xS3) = C3xQ8:2D9 | φ: C3xS3/C32 → C2 ⊆ Out C3xQ8 | 144 | 4 | (C3xQ8).22(C3xS3) | 432,157 |
(C3xQ8).23(C3xS3) = He3:6Q16 | φ: C3xS3/C32 → C2 ⊆ Out C3xQ8 | 144 | 12- | (C3xQ8).23(C3xS3) | 432,160 |
(C3xQ8).24(C3xS3) = He3:10SD16 | φ: C3xS3/C32 → C2 ⊆ Out C3xQ8 | 72 | 12+ | (C3xQ8).24(C3xS3) | 432,161 |
(C3xQ8).25(C3xS3) = Dic18.C6 | φ: C3xS3/C32 → C2 ⊆ Out C3xQ8 | 144 | 12- | (C3xQ8).25(C3xS3) | 432,162 |
(C3xQ8).26(C3xS3) = D36.C6 | φ: C3xS3/C32 → C2 ⊆ Out C3xQ8 | 72 | 12+ | (C3xQ8).26(C3xS3) | 432,163 |
(C3xQ8).27(C3xS3) = C3xQ8xD9 | φ: C3xS3/C32 → C2 ⊆ Out C3xQ8 | 144 | 4 | (C3xQ8).27(C3xS3) | 432,364 |
(C3xQ8).28(C3xS3) = C3xQ8:3D9 | φ: C3xS3/C32 → C2 ⊆ Out C3xQ8 | 144 | 4 | (C3xQ8).28(C3xS3) | 432,365 |
(C3xQ8).29(C3xS3) = Q8xC32:C6 | φ: C3xS3/C32 → C2 ⊆ Out C3xQ8 | 72 | 12- | (C3xQ8).29(C3xS3) | 432,368 |
(C3xQ8).30(C3xS3) = (Q8xHe3):C2 | φ: C3xS3/C32 → C2 ⊆ Out C3xQ8 | 72 | 12+ | (C3xQ8).30(C3xS3) | 432,369 |
(C3xQ8).31(C3xS3) = Q8xC9:C6 | φ: C3xS3/C32 → C2 ⊆ Out C3xQ8 | 72 | 12- | (C3xQ8).31(C3xS3) | 432,370 |
(C3xQ8).32(C3xS3) = D36:3C6 | φ: C3xS3/C32 → C2 ⊆ Out C3xQ8 | 72 | 12+ | (C3xQ8).32(C3xS3) | 432,371 |
(C3xQ8).33(C3xS3) = C3xC32:7Q16 | φ: C3xS3/C32 → C2 ⊆ Out C3xQ8 | 144 | | (C3xQ8).33(C3xS3) | 432,494 |
(C3xQ8).34(C3xS3) = C9xQ8:2S3 | φ: C3xS3/C32 → C2 ⊆ Out C3xQ8 | 144 | 4 | (C3xQ8).34(C3xS3) | 432,158 |
(C3xQ8).35(C3xS3) = C9xC3:Q16 | φ: C3xS3/C32 → C2 ⊆ Out C3xQ8 | 144 | 4 | (C3xQ8).35(C3xS3) | 432,159 |
(C3xQ8).36(C3xS3) = C32xC3:Q16 | φ: C3xS3/C32 → C2 ⊆ Out C3xQ8 | 144 | | (C3xQ8).36(C3xS3) | 432,478 |
(C3xQ8).37(C3xS3) = S3xQ8xC9 | φ: trivial image | 144 | 4 | (C3xQ8).37(C3xS3) | 432,366 |
(C3xQ8).38(C3xS3) = C9xQ8:3S3 | φ: trivial image | 144 | 4 | (C3xQ8).38(C3xS3) | 432,367 |