extension | φ:Q→Out N | d | ρ | Label | ID |
(C3×Q8).1(C3×S3) = C32.CSU2(𝔽3) | φ: C3×S3/C3 → S3 ⊆ Out C3×Q8 | 144 | 12- | (C3xQ8).1(C3xS3) | 432,243 |
(C3×Q8).2(C3×S3) = C3×Q8.D9 | φ: C3×S3/C3 → S3 ⊆ Out C3×Q8 | 144 | 4 | (C3xQ8).2(C3xS3) | 432,244 |
(C3×Q8).3(C3×S3) = C32.GL2(𝔽3) | φ: C3×S3/C3 → S3 ⊆ Out C3×Q8 | 72 | 12+ | (C3xQ8).3(C3xS3) | 432,245 |
(C3×Q8).4(C3×S3) = C3×Q8⋊D9 | φ: C3×S3/C3 → S3 ⊆ Out C3×Q8 | 144 | 4 | (C3xQ8).4(C3xS3) | 432,246 |
(C3×Q8).5(C3×S3) = C32⋊CSU2(𝔽3) | φ: C3×S3/C3 → S3 ⊆ Out C3×Q8 | 144 | 12- | (C3xQ8).5(C3xS3) | 432,247 |
(C3×Q8).6(C3×S3) = C32⋊2GL2(𝔽3) | φ: C3×S3/C3 → S3 ⊆ Out C3×Q8 | 72 | 12+ | (C3xQ8).6(C3xS3) | 432,248 |
(C3×Q8).7(C3×S3) = C3×C6.5S4 | φ: C3×S3/C3 → S3 ⊆ Out C3×Q8 | 48 | 4 | (C3xQ8).7(C3xS3) | 432,616 |
(C3×Q8).8(C3×S3) = C9×CSU2(𝔽3) | φ: C3×S3/C3 → S3 ⊆ Out C3×Q8 | 144 | 2 | (C3xQ8).8(C3xS3) | 432,240 |
(C3×Q8).9(C3×S3) = C9×GL2(𝔽3) | φ: C3×S3/C3 → S3 ⊆ Out C3×Q8 | 72 | 2 | (C3xQ8).9(C3xS3) | 432,241 |
(C3×Q8).10(C3×S3) = C32×CSU2(𝔽3) | φ: C3×S3/C3 → S3 ⊆ Out C3×Q8 | 144 | | (C3xQ8).10(C3xS3) | 432,613 |
(C3×Q8).11(C3×S3) = Dic9.A4 | φ: C3×S3/C3 → C6 ⊆ Out C3×Q8 | 144 | 12+ | (C3xQ8).11(C3xS3) | 432,261 |
(C3×Q8).12(C3×S3) = Dic9.2A4 | φ: C3×S3/C3 → C6 ⊆ Out C3×Q8 | 144 | 4+ | (C3xQ8).12(C3xS3) | 432,262 |
(C3×Q8).13(C3×S3) = D18.A4 | φ: C3×S3/C3 → C6 ⊆ Out C3×Q8 | 72 | 12- | (C3xQ8).13(C3xS3) | 432,263 |
(C3×Q8).14(C3×S3) = D9×SL2(𝔽3) | φ: C3×S3/C3 → C6 ⊆ Out C3×Q8 | 72 | 4- | (C3xQ8).14(C3xS3) | 432,264 |
(C3×Q8).15(C3×S3) = C6.(S3×A4) | φ: C3×S3/C3 → C6 ⊆ Out C3×Q8 | 72 | 12+ | (C3xQ8).15(C3xS3) | 432,269 |
(C3×Q8).16(C3×S3) = Q8⋊He3⋊C2 | φ: C3×S3/C3 → C6 ⊆ Out C3×Q8 | 72 | 12- | (C3xQ8).16(C3xS3) | 432,270 |
(C3×Q8).17(C3×S3) = C3⋊Dic3.2A4 | φ: C3×S3/C3 → C6 ⊆ Out C3×Q8 | 144 | | (C3xQ8).17(C3xS3) | 432,625 |
(C3×Q8).18(C3×S3) = Q8⋊C9⋊3S3 | φ: C3×S3/S3 → C3 ⊆ Out C3×Q8 | 144 | 4 | (C3xQ8).18(C3xS3) | 432,267 |
(C3×Q8).19(C3×S3) = S3×Q8⋊C9 | φ: C3×S3/S3 → C3 ⊆ Out C3×Q8 | 144 | 4 | (C3xQ8).19(C3xS3) | 432,268 |
(C3×Q8).20(C3×S3) = C3×Dic3.A4 | φ: C3×S3/S3 → C3 ⊆ Out C3×Q8 | 48 | 4 | (C3xQ8).20(C3xS3) | 432,622 |
(C3×Q8).21(C3×S3) = C3×C9⋊Q16 | φ: C3×S3/C32 → C2 ⊆ Out C3×Q8 | 144 | 4 | (C3xQ8).21(C3xS3) | 432,156 |
(C3×Q8).22(C3×S3) = C3×Q8⋊2D9 | φ: C3×S3/C32 → C2 ⊆ Out C3×Q8 | 144 | 4 | (C3xQ8).22(C3xS3) | 432,157 |
(C3×Q8).23(C3×S3) = He3⋊6Q16 | φ: C3×S3/C32 → C2 ⊆ Out C3×Q8 | 144 | 12- | (C3xQ8).23(C3xS3) | 432,160 |
(C3×Q8).24(C3×S3) = He3⋊10SD16 | φ: C3×S3/C32 → C2 ⊆ Out C3×Q8 | 72 | 12+ | (C3xQ8).24(C3xS3) | 432,161 |
(C3×Q8).25(C3×S3) = Dic18.C6 | φ: C3×S3/C32 → C2 ⊆ Out C3×Q8 | 144 | 12- | (C3xQ8).25(C3xS3) | 432,162 |
(C3×Q8).26(C3×S3) = D36.C6 | φ: C3×S3/C32 → C2 ⊆ Out C3×Q8 | 72 | 12+ | (C3xQ8).26(C3xS3) | 432,163 |
(C3×Q8).27(C3×S3) = C3×Q8×D9 | φ: C3×S3/C32 → C2 ⊆ Out C3×Q8 | 144 | 4 | (C3xQ8).27(C3xS3) | 432,364 |
(C3×Q8).28(C3×S3) = C3×Q8⋊3D9 | φ: C3×S3/C32 → C2 ⊆ Out C3×Q8 | 144 | 4 | (C3xQ8).28(C3xS3) | 432,365 |
(C3×Q8).29(C3×S3) = Q8×C32⋊C6 | φ: C3×S3/C32 → C2 ⊆ Out C3×Q8 | 72 | 12- | (C3xQ8).29(C3xS3) | 432,368 |
(C3×Q8).30(C3×S3) = (Q8×He3)⋊C2 | φ: C3×S3/C32 → C2 ⊆ Out C3×Q8 | 72 | 12+ | (C3xQ8).30(C3xS3) | 432,369 |
(C3×Q8).31(C3×S3) = Q8×C9⋊C6 | φ: C3×S3/C32 → C2 ⊆ Out C3×Q8 | 72 | 12- | (C3xQ8).31(C3xS3) | 432,370 |
(C3×Q8).32(C3×S3) = D36⋊3C6 | φ: C3×S3/C32 → C2 ⊆ Out C3×Q8 | 72 | 12+ | (C3xQ8).32(C3xS3) | 432,371 |
(C3×Q8).33(C3×S3) = C3×C32⋊7Q16 | φ: C3×S3/C32 → C2 ⊆ Out C3×Q8 | 144 | | (C3xQ8).33(C3xS3) | 432,494 |
(C3×Q8).34(C3×S3) = C9×Q8⋊2S3 | φ: C3×S3/C32 → C2 ⊆ Out C3×Q8 | 144 | 4 | (C3xQ8).34(C3xS3) | 432,158 |
(C3×Q8).35(C3×S3) = C9×C3⋊Q16 | φ: C3×S3/C32 → C2 ⊆ Out C3×Q8 | 144 | 4 | (C3xQ8).35(C3xS3) | 432,159 |
(C3×Q8).36(C3×S3) = C32×C3⋊Q16 | φ: C3×S3/C32 → C2 ⊆ Out C3×Q8 | 144 | | (C3xQ8).36(C3xS3) | 432,478 |
(C3×Q8).37(C3×S3) = S3×Q8×C9 | φ: trivial image | 144 | 4 | (C3xQ8).37(C3xS3) | 432,366 |
(C3×Q8).38(C3×S3) = C9×Q8⋊3S3 | φ: trivial image | 144 | 4 | (C3xQ8).38(C3xS3) | 432,367 |