Extensions 1→N→G→Q→1 with N=C2×3- 1+2 and Q=D4

Direct product G=N×Q with N=C2×3- 1+2 and Q=D4
C2×D4×3- 1+272C2xD4xES-(3,1)432,405

Semidirect products G=N:Q with N=C2×3- 1+2 and Q=D4
extensionφ:Q→Out NdρLabelID
(C2×3- 1+2)⋊1D4 = C2×D36⋊C3φ: D4/C4C2 ⊆ Out C2×3- 1+272(C2xES-(3,1)):1D4432,354
(C2×3- 1+2)⋊2D4 = C2×Dic9⋊C6φ: D4/C22C2 ⊆ Out C2×3- 1+272(C2xES-(3,1)):2D4432,379

Non-split extensions G=N.Q with N=C2×3- 1+2 and Q=D4
extensionφ:Q→Out NdρLabelID
(C2×3- 1+2).1D4 = C72.C6φ: D4/C4C2 ⊆ Out C2×3- 1+21446-(C2xES-(3,1)).1D4432,119
(C2×3- 1+2).2D4 = C722C6φ: D4/C4C2 ⊆ Out C2×3- 1+2726(C2xES-(3,1)).2D4432,122
(C2×3- 1+2).3D4 = D72⋊C3φ: D4/C4C2 ⊆ Out C2×3- 1+2726+(C2xES-(3,1)).3D4432,123
(C2×3- 1+2).4D4 = C36⋊C12φ: D4/C4C2 ⊆ Out C2×3- 1+2144(C2xES-(3,1)).4D4432,146
(C2×3- 1+2).5D4 = D18⋊C12φ: D4/C4C2 ⊆ Out C2×3- 1+272(C2xES-(3,1)).5D4432,147
(C2×3- 1+2).6D4 = Dic9⋊C12φ: D4/C22C2 ⊆ Out C2×3- 1+2144(C2xES-(3,1)).6D4432,145
(C2×3- 1+2).7D4 = Dic18⋊C6φ: D4/C22C2 ⊆ Out C2×3- 1+27212-(C2xES-(3,1)).7D4432,154
(C2×3- 1+2).8D4 = D36⋊C6φ: D4/C22C2 ⊆ Out C2×3- 1+27212+(C2xES-(3,1)).8D4432,155
(C2×3- 1+2).9D4 = Dic18.C6φ: D4/C22C2 ⊆ Out C2×3- 1+214412-(C2xES-(3,1)).9D4432,162
(C2×3- 1+2).10D4 = D36.C6φ: D4/C22C2 ⊆ Out C2×3- 1+27212+(C2xES-(3,1)).10D4432,163
(C2×3- 1+2).11D4 = C62.27D6φ: D4/C22C2 ⊆ Out C2×3- 1+272(C2xES-(3,1)).11D4432,167
(C2×3- 1+2).12D4 = C22⋊C4×3- 1+2φ: trivial image72(C2xES-(3,1)).12D4432,205
(C2×3- 1+2).13D4 = C4⋊C4×3- 1+2φ: trivial image144(C2xES-(3,1)).13D4432,208
(C2×3- 1+2).14D4 = D8×3- 1+2φ: trivial image726(C2xES-(3,1)).14D4432,217
(C2×3- 1+2).15D4 = SD16×3- 1+2φ: trivial image726(C2xES-(3,1)).15D4432,220
(C2×3- 1+2).16D4 = Q16×3- 1+2φ: trivial image1446(C2xES-(3,1)).16D4432,223