Extensions 1→N→G→Q→1 with N=Dic3 and Q=D18

Direct product G=N×Q with N=Dic3 and Q=D18
dρLabelID
C2×Dic3×D9144C2xDic3xD9432,304

Semidirect products G=N:Q with N=Dic3 and Q=D18
extensionφ:Q→Out NdρLabelID
Dic31D18 = D9×C3⋊D4φ: D18/D9C2 ⊆ Out Dic3724Dic3:1D18432,314
Dic32D18 = D18⋊D6φ: D18/D9C2 ⊆ Out Dic3364+Dic3:2D18432,315
Dic33D18 = S3×D36φ: D18/C18C2 ⊆ Out Dic3724+Dic3:3D18432,291
Dic34D18 = C2×C3⋊D36φ: D18/C18C2 ⊆ Out Dic372Dic3:4D18432,307
Dic35D18 = C4×S3×D9φ: trivial image724Dic3:5D18432,290
Dic36D18 = C2×C18.D6φ: trivial image72Dic3:6D18432,306

Non-split extensions G=N.Q with N=Dic3 and Q=D18
extensionφ:Q→Out NdρLabelID
Dic3.1D18 = D9×Dic6φ: D18/D9C2 ⊆ Out Dic31444-Dic3.1D18432,280
Dic3.2D18 = D18.D6φ: D18/D9C2 ⊆ Out Dic3724Dic3.2D18432,281
Dic3.3D18 = Dic65D9φ: D18/D9C2 ⊆ Out Dic3724+Dic3.3D18432,282
Dic3.4D18 = Dic18⋊S3φ: D18/D9C2 ⊆ Out Dic3724Dic3.4D18432,283
Dic3.5D18 = Dic3.D18φ: D18/D9C2 ⊆ Out Dic3724Dic3.5D18432,309
Dic3.6D18 = D18.4D6φ: D18/D9C2 ⊆ Out Dic3724-Dic3.6D18432,310
Dic3.7D18 = S3×Dic18φ: D18/C18C2 ⊆ Out Dic31444-Dic3.7D18432,284
Dic3.8D18 = D6.D18φ: D18/C18C2 ⊆ Out Dic3724Dic3.8D18432,287
Dic3.9D18 = C2×C9⋊Dic6φ: D18/C18C2 ⊆ Out Dic3144Dic3.9D18432,303
Dic3.10D18 = D365S3φ: trivial image1444-Dic3.10D18432,288
Dic3.11D18 = Dic9.D6φ: trivial image724+Dic3.11D18432,289
Dic3.12D18 = D18.3D6φ: trivial image724Dic3.12D18432,305

׿
×
𝔽