extension | φ:Q→Aut N | d | ρ | Label | ID |
(C2×C4).1D28 = C7⋊C2≀C4 | φ: D28/C7 → D4 ⊆ Aut C2×C4 | 56 | 8+ | (C2xC4).1D28 | 448,28 |
(C2×C4).2D28 = (C2×C28).D4 | φ: D28/C7 → D4 ⊆ Aut C2×C4 | 112 | 8- | (C2xC4).2D28 | 448,29 |
(C2×C4).3D28 = (C2×C4).D28 | φ: D28/C7 → D4 ⊆ Aut C2×C4 | 112 | 8+ | (C2xC4).3D28 | 448,34 |
(C2×C4).4D28 = (C2×Q8).D14 | φ: D28/C7 → D4 ⊆ Aut C2×C4 | 112 | 8- | (C2xC4).4D28 | 448,35 |
(C2×C4).5D28 = C23.5D28 | φ: D28/C7 → D4 ⊆ Aut C2×C4 | 112 | 8- | (C2xC4).5D28 | 448,276 |
(C2×C4).6D28 = D28.4D4 | φ: D28/C7 → D4 ⊆ Aut C2×C4 | 112 | 8- | (C2xC4).6D28 | 448,286 |
(C2×C4).7D28 = D28.5D4 | φ: D28/C7 → D4 ⊆ Aut C2×C4 | 112 | 8+ | (C2xC4).7D28 | 448,287 |
(C2×C4).8D28 = C16⋊Dic7 | φ: D28/C14 → C22 ⊆ Aut C2×C4 | 112 | 4 | (C2xC4).8D28 | 448,70 |
(C2×C4).9D28 = C28.3D8 | φ: D28/C14 → C22 ⊆ Aut C2×C4 | 112 | 4+ | (C2xC4).9D28 | 448,73 |
(C2×C4).10D28 = C28.4D8 | φ: D28/C14 → C22 ⊆ Aut C2×C4 | 224 | 4- | (C2xC4).10D28 | 448,74 |
(C2×C4).11D28 = D56⋊2C4 | φ: D28/C14 → C22 ⊆ Aut C2×C4 | 112 | 4 | (C2xC4).11D28 | 448,75 |
(C2×C4).12D28 = C28.(C4⋊C4) | φ: D28/C14 → C22 ⊆ Aut C2×C4 | 224 | | (C2xC4).12D28 | 448,87 |
(C2×C4).13D28 = C42⋊Dic7 | φ: D28/C14 → C22 ⊆ Aut C2×C4 | 112 | 4 | (C2xC4).13D28 | 448,88 |
(C2×C4).14D28 = (C2×C56)⋊C4 | φ: D28/C14 → C22 ⊆ Aut C2×C4 | 112 | 4 | (C2xC4).14D28 | 448,113 |
(C2×C4).15D28 = C28.21C42 | φ: D28/C14 → C22 ⊆ Aut C2×C4 | 112 | 4 | (C2xC4).15D28 | 448,117 |
(C2×C4).16D28 = (C2×Dic7)⋊Q8 | φ: D28/C14 → C22 ⊆ Aut C2×C4 | 448 | | (C2xC4).16D28 | 448,190 |
(C2×C4).17D28 = (C2×C28).28D4 | φ: D28/C14 → C22 ⊆ Aut C2×C4 | 448 | | (C2xC4).17D28 | 448,193 |
(C2×C4).18D28 = C14.(C4⋊Q8) | φ: D28/C14 → C22 ⊆ Aut C2×C4 | 448 | | (C2xC4).18D28 | 448,195 |
(C2×C4).19D28 = (C2×Dic7)⋊3D4 | φ: D28/C14 → C22 ⊆ Aut C2×C4 | 224 | | (C2xC4).19D28 | 448,206 |
(C2×C4).20D28 = (C2×C4).20D28 | φ: D28/C14 → C22 ⊆ Aut C2×C4 | 224 | | (C2xC4).20D28 | 448,207 |
(C2×C4).21D28 = (C2×C4).21D28 | φ: D28/C14 → C22 ⊆ Aut C2×C4 | 224 | | (C2xC4).21D28 | 448,208 |
(C2×C4).22D28 = (C2×C28).33D4 | φ: D28/C14 → C22 ⊆ Aut C2×C4 | 224 | | (C2xC4).22D28 | 448,211 |
(C2×C4).23D28 = C8⋊Dic14 | φ: D28/C14 → C22 ⊆ Aut C2×C4 | 448 | | (C2xC4).23D28 | 448,236 |
(C2×C4).24D28 = C42.14D14 | φ: D28/C14 → C22 ⊆ Aut C2×C4 | 448 | | (C2xC4).24D28 | 448,237 |
(C2×C4).25D28 = C8⋊D28 | φ: D28/C14 → C22 ⊆ Aut C2×C4 | 224 | | (C2xC4).25D28 | 448,246 |
(C2×C4).26D28 = C42.19D14 | φ: D28/C14 → C22 ⊆ Aut C2×C4 | 224 | | (C2xC4).26D28 | 448,247 |
(C2×C4).27D28 = C42.20D14 | φ: D28/C14 → C22 ⊆ Aut C2×C4 | 224 | | (C2xC4).27D28 | 448,248 |
(C2×C4).28D28 = C8.D28 | φ: D28/C14 → C22 ⊆ Aut C2×C4 | 224 | | (C2xC4).28D28 | 448,249 |
(C2×C4).29D28 = C23.34D28 | φ: D28/C14 → C22 ⊆ Aut C2×C4 | 224 | | (C2xC4).29D28 | 448,255 |
(C2×C4).30D28 = C23.35D28 | φ: D28/C14 → C22 ⊆ Aut C2×C4 | 224 | | (C2xC4).30D28 | 448,256 |
(C2×C4).31D28 = D28.31D4 | φ: D28/C14 → C22 ⊆ Aut C2×C4 | 112 | | (C2xC4).31D28 | 448,265 |
(C2×C4).32D28 = D28⋊13D4 | φ: D28/C14 → C22 ⊆ Aut C2×C4 | 112 | | (C2xC4).32D28 | 448,266 |
(C2×C4).33D28 = C23.38D28 | φ: D28/C14 → C22 ⊆ Aut C2×C4 | 224 | | (C2xC4).33D28 | 448,269 |
(C2×C4).34D28 = C22.D56 | φ: D28/C14 → C22 ⊆ Aut C2×C4 | 224 | | (C2xC4).34D28 | 448,270 |
(C2×C4).35D28 = Dic14⋊14D4 | φ: D28/C14 → C22 ⊆ Aut C2×C4 | 224 | | (C2xC4).35D28 | 448,272 |
(C2×C4).36D28 = C22⋊Dic28 | φ: D28/C14 → C22 ⊆ Aut C2×C4 | 224 | | (C2xC4).36D28 | 448,273 |
(C2×C4).37D28 = Dic14.3Q8 | φ: D28/C14 → C22 ⊆ Aut C2×C4 | 448 | | (C2xC4).37D28 | 448,363 |
(C2×C4).38D28 = D28.19D4 | φ: D28/C14 → C22 ⊆ Aut C2×C4 | 224 | | (C2xC4).38D28 | 448,378 |
(C2×C4).39D28 = C42.36D14 | φ: D28/C14 → C22 ⊆ Aut C2×C4 | 224 | | (C2xC4).39D28 | 448,379 |
(C2×C4).40D28 = D28.3Q8 | φ: D28/C14 → C22 ⊆ Aut C2×C4 | 224 | | (C2xC4).40D28 | 448,381 |
(C2×C4).41D28 = C16⋊D14 | φ: D28/C14 → C22 ⊆ Aut C2×C4 | 112 | 4+ | (C2xC4).41D28 | 448,442 |
(C2×C4).42D28 = C16.D14 | φ: D28/C14 → C22 ⊆ Aut C2×C4 | 224 | 4- | (C2xC4).42D28 | 448,443 |
(C2×C4).43D28 = C4○D28⋊C4 | φ: D28/C14 → C22 ⊆ Aut C2×C4 | 224 | | (C2xC4).43D28 | 448,500 |
(C2×C4).44D28 = (C2×C4).44D28 | φ: D28/C14 → C22 ⊆ Aut C2×C4 | 448 | | (C2xC4).44D28 | 448,517 |
(C2×C4).45D28 = (C2×C4).45D28 | φ: D28/C14 → C22 ⊆ Aut C2×C4 | 224 | | (C2xC4).45D28 | 448,528 |
(C2×C4).46D28 = C4⋊C4⋊36D14 | φ: D28/C14 → C22 ⊆ Aut C2×C4 | 112 | | (C2xC4).46D28 | 448,535 |
(C2×C4).47D28 = (C2×C4).47D28 | φ: D28/C14 → C22 ⊆ Aut C2×C4 | 224 | | (C2xC4).47D28 | 448,538 |
(C2×C4).48D28 = (C2×D28)⋊13C4 | φ: D28/C14 → C22 ⊆ Aut C2×C4 | 112 | 4 | (C2xC4).48D28 | 448,540 |
(C2×C4).49D28 = C2×C28.46D4 | φ: D28/C14 → C22 ⊆ Aut C2×C4 | 112 | | (C2xC4).49D28 | 448,664 |
(C2×C4).50D28 = M4(2).31D14 | φ: D28/C14 → C22 ⊆ Aut C2×C4 | 112 | 4 | (C2xC4).50D28 | 448,666 |
(C2×C4).51D28 = C56⋊2D4 | φ: D28/C14 → C22 ⊆ Aut C2×C4 | 224 | | (C2xC4).51D28 | 448,668 |
(C2×C4).52D28 = C56⋊3D4 | φ: D28/C14 → C22 ⊆ Aut C2×C4 | 224 | | (C2xC4).52D28 | 448,669 |
(C2×C4).53D28 = C2×C4.12D28 | φ: D28/C14 → C22 ⊆ Aut C2×C4 | 224 | | (C2xC4).53D28 | 448,670 |
(C2×C4).54D28 = C56.4D4 | φ: D28/C14 → C22 ⊆ Aut C2×C4 | 224 | | (C2xC4).54D28 | 448,671 |
(C2×C4).55D28 = C23.20D28 | φ: D28/C14 → C22 ⊆ Aut C2×C4 | 112 | 4 | (C2xC4).55D28 | 448,673 |
(C2×C4).56D28 = C42.92D14 | φ: D28/C14 → C22 ⊆ Aut C2×C4 | 224 | | (C2xC4).56D28 | 448,979 |
(C2×C4).57D28 = C2×C8⋊D14 | φ: D28/C14 → C22 ⊆ Aut C2×C4 | 112 | | (C2xC4).57D28 | 448,1199 |
(C2×C4).58D28 = C2×C8.D14 | φ: D28/C14 → C22 ⊆ Aut C2×C4 | 224 | | (C2xC4).58D28 | 448,1200 |
(C2×C4).59D28 = C56.13Q8 | φ: D28/C28 → C2 ⊆ Aut C2×C4 | 448 | | (C2xC4).59D28 | 448,217 |
(C2×C4).60D28 = C4×C56⋊C2 | φ: D28/C28 → C2 ⊆ Aut C2×C4 | 224 | | (C2xC4).60D28 | 448,225 |
(C2×C4).61D28 = C4×D56 | φ: D28/C28 → C2 ⊆ Aut C2×C4 | 224 | | (C2xC4).61D28 | 448,226 |
(C2×C4).62D28 = C8.8D28 | φ: D28/C28 → C2 ⊆ Aut C2×C4 | 224 | | (C2xC4).62D28 | 448,230 |
(C2×C4).63D28 = C42.264D14 | φ: D28/C28 → C2 ⊆ Aut C2×C4 | 224 | | (C2xC4).63D28 | 448,231 |
(C2×C4).64D28 = C4×Dic28 | φ: D28/C28 → C2 ⊆ Aut C2×C4 | 448 | | (C2xC4).64D28 | 448,232 |
(C2×C4).65D28 = C28⋊4(C4⋊C4) | φ: D28/C28 → C2 ⊆ Aut C2×C4 | 448 | | (C2xC4).65D28 | 448,462 |
(C2×C4).66D28 = (C2×C42)⋊D7 | φ: D28/C28 → C2 ⊆ Aut C2×C4 | 224 | | (C2xC4).66D28 | 448,474 |
(C2×C4).67D28 = C56⋊30D4 | φ: D28/C28 → C2 ⊆ Aut C2×C4 | 224 | | (C2xC4).67D28 | 448,648 |
(C2×C4).68D28 = C56⋊29D4 | φ: D28/C28 → C2 ⊆ Aut C2×C4 | 224 | | (C2xC4).68D28 | 448,649 |
(C2×C4).69D28 = C56.82D4 | φ: D28/C28 → C2 ⊆ Aut C2×C4 | 224 | | (C2xC4).69D28 | 448,650 |
(C2×C4).70D28 = C56.78D4 | φ: D28/C28 → C2 ⊆ Aut C2×C4 | 448 | | (C2xC4).70D28 | 448,60 |
(C2×C4).71D28 = C112⋊5C4 | φ: D28/C28 → C2 ⊆ Aut C2×C4 | 448 | | (C2xC4).71D28 | 448,61 |
(C2×C4).72D28 = C112⋊6C4 | φ: D28/C28 → C2 ⊆ Aut C2×C4 | 448 | | (C2xC4).72D28 | 448,62 |
(C2×C4).73D28 = C112.C4 | φ: D28/C28 → C2 ⊆ Aut C2×C4 | 224 | 2 | (C2xC4).73D28 | 448,63 |
(C2×C4).74D28 = C2.D112 | φ: D28/C28 → C2 ⊆ Aut C2×C4 | 224 | | (C2xC4).74D28 | 448,66 |
(C2×C4).75D28 = D56.1C4 | φ: D28/C28 → C2 ⊆ Aut C2×C4 | 224 | 2 | (C2xC4).75D28 | 448,67 |
(C2×C4).76D28 = C56⋊9Q8 | φ: D28/C28 → C2 ⊆ Aut C2×C4 | 448 | | (C2xC4).76D28 | 448,214 |
(C2×C4).77D28 = C28.14Q16 | φ: D28/C28 → C2 ⊆ Aut C2×C4 | 448 | | (C2xC4).77D28 | 448,215 |
(C2×C4).78D28 = C56⋊8Q8 | φ: D28/C28 → C2 ⊆ Aut C2×C4 | 448 | | (C2xC4).78D28 | 448,216 |
(C2×C4).79D28 = C8⋊5D28 | φ: D28/C28 → C2 ⊆ Aut C2×C4 | 224 | | (C2xC4).79D28 | 448,227 |
(C2×C4).80D28 = C4.5D56 | φ: D28/C28 → C2 ⊆ Aut C2×C4 | 224 | | (C2xC4).80D28 | 448,228 |
(C2×C4).81D28 = C28⋊4D8 | φ: D28/C28 → C2 ⊆ Aut C2×C4 | 224 | | (C2xC4).81D28 | 448,229 |
(C2×C4).82D28 = C28⋊4Q16 | φ: D28/C28 → C2 ⊆ Aut C2×C4 | 448 | | (C2xC4).82D28 | 448,233 |
(C2×C4).83D28 = C2×D112 | φ: D28/C28 → C2 ⊆ Aut C2×C4 | 224 | | (C2xC4).83D28 | 448,436 |
(C2×C4).84D28 = C2×C112⋊C2 | φ: D28/C28 → C2 ⊆ Aut C2×C4 | 224 | | (C2xC4).84D28 | 448,437 |
(C2×C4).85D28 = D112⋊7C2 | φ: D28/C28 → C2 ⊆ Aut C2×C4 | 224 | 2 | (C2xC4).85D28 | 448,438 |
(C2×C4).86D28 = C2×Dic56 | φ: D28/C28 → C2 ⊆ Aut C2×C4 | 448 | | (C2xC4).86D28 | 448,439 |
(C2×C4).87D28 = C28⋊7M4(2) | φ: D28/C28 → C2 ⊆ Aut C2×C4 | 224 | | (C2xC4).87D28 | 448,458 |
(C2×C4).88D28 = C2×Dic14⋊C4 | φ: D28/C28 → C2 ⊆ Aut C2×C4 | 112 | | (C2xC4).88D28 | 448,461 |
(C2×C4).89D28 = (C2×C28)⋊10Q8 | φ: D28/C28 → C2 ⊆ Aut C2×C4 | 448 | | (C2xC4).89D28 | 448,463 |
(C2×C4).90D28 = C42⋊8Dic7 | φ: D28/C28 → C2 ⊆ Aut C2×C4 | 448 | | (C2xC4).90D28 | 448,469 |
(C2×C4).91D28 = C42⋊9Dic7 | φ: D28/C28 → C2 ⊆ Aut C2×C4 | 448 | | (C2xC4).91D28 | 448,470 |
(C2×C4).92D28 = C2×C28.44D4 | φ: D28/C28 → C2 ⊆ Aut C2×C4 | 448 | | (C2xC4).92D28 | 448,637 |
(C2×C4).93D28 = C2×C8⋊Dic7 | φ: D28/C28 → C2 ⊆ Aut C2×C4 | 448 | | (C2xC4).93D28 | 448,638 |
(C2×C4).94D28 = C2×C56⋊1C4 | φ: D28/C28 → C2 ⊆ Aut C2×C4 | 448 | | (C2xC4).94D28 | 448,639 |
(C2×C4).95D28 = (C22×C8)⋊D7 | φ: D28/C28 → C2 ⊆ Aut C2×C4 | 224 | | (C2xC4).95D28 | 448,644 |
(C2×C4).96D28 = C2×C2.D56 | φ: D28/C28 → C2 ⊆ Aut C2×C4 | 224 | | (C2xC4).96D28 | 448,646 |
(C2×C4).97D28 = C2×C28⋊2Q8 | φ: D28/C28 → C2 ⊆ Aut C2×C4 | 448 | | (C2xC4).97D28 | 448,921 |
(C2×C4).98D28 = C2×C4.D28 | φ: D28/C28 → C2 ⊆ Aut C2×C4 | 224 | | (C2xC4).98D28 | 448,929 |
(C2×C4).99D28 = C22×C56⋊C2 | φ: D28/C28 → C2 ⊆ Aut C2×C4 | 224 | | (C2xC4).99D28 | 448,1192 |
(C2×C4).100D28 = C22×D56 | φ: D28/C28 → C2 ⊆ Aut C2×C4 | 224 | | (C2xC4).100D28 | 448,1193 |
(C2×C4).101D28 = C2×D56⋊7C2 | φ: D28/C28 → C2 ⊆ Aut C2×C4 | 224 | | (C2xC4).101D28 | 448,1194 |
(C2×C4).102D28 = C22×Dic28 | φ: D28/C28 → C2 ⊆ Aut C2×C4 | 448 | | (C2xC4).102D28 | 448,1195 |
(C2×C4).103D28 = C14.C4≀C2 | φ: D28/D14 → C2 ⊆ Aut C2×C4 | 112 | | (C2xC4).103D28 | 448,8 |
(C2×C4).104D28 = C4⋊Dic7⋊C4 | φ: D28/D14 → C2 ⊆ Aut C2×C4 | 112 | | (C2xC4).104D28 | 448,9 |
(C2×C4).105D28 = C42.D14 | φ: D28/D14 → C2 ⊆ Aut C2×C4 | 224 | | (C2xC4).105D28 | 448,21 |
(C2×C4).106D28 = C42.2D14 | φ: D28/D14 → C2 ⊆ Aut C2×C4 | 448 | | (C2xC4).106D28 | 448,22 |
(C2×C4).107D28 = (C22×D7)⋊C8 | φ: D28/D14 → C2 ⊆ Aut C2×C4 | 112 | | (C2xC4).107D28 | 448,25 |
(C2×C4).108D28 = (C2×Dic7)⋊C8 | φ: D28/D14 → C2 ⊆ Aut C2×C4 | 224 | | (C2xC4).108D28 | 448,26 |
(C2×C4).109D28 = D28⋊2C8 | φ: D28/D14 → C2 ⊆ Aut C2×C4 | 224 | | (C2xC4).109D28 | 448,40 |
(C2×C4).110D28 = Dic14⋊2C8 | φ: D28/D14 → C2 ⊆ Aut C2×C4 | 448 | | (C2xC4).110D28 | 448,41 |
(C2×C4).111D28 = C4⋊Dic7⋊7C4 | φ: D28/D14 → C2 ⊆ Aut C2×C4 | 448 | | (C2xC4).111D28 | 448,187 |
(C2×C4).112D28 = D14⋊C4⋊C4 | φ: D28/D14 → C2 ⊆ Aut C2×C4 | 224 | | (C2xC4).112D28 | 448,202 |
(C2×C4).113D28 = C2.(C4×D28) | φ: D28/D14 → C2 ⊆ Aut C2×C4 | 224 | | (C2xC4).113D28 | 448,204 |
(C2×C4).114D28 = C42.16D14 | φ: D28/D14 → C2 ⊆ Aut C2×C4 | 224 | | (C2xC4).114D28 | 448,244 |
(C2×C4).115D28 = D56⋊C4 | φ: D28/D14 → C2 ⊆ Aut C2×C4 | 224 | | (C2xC4).115D28 | 448,245 |
(C2×C4).116D28 = Dic28⋊C4 | φ: D28/D14 → C2 ⊆ Aut C2×C4 | 448 | | (C2xC4).116D28 | 448,250 |
(C2×C4).117D28 = C23.10D28 | φ: D28/D14 → C2 ⊆ Aut C2×C4 | 224 | | (C2xC4).117D28 | 448,257 |
(C2×C4).118D28 = D28.32D4 | φ: D28/D14 → C2 ⊆ Aut C2×C4 | 224 | | (C2xC4).118D28 | 448,267 |
(C2×C4).119D28 = D28⋊14D4 | φ: D28/D14 → C2 ⊆ Aut C2×C4 | 224 | | (C2xC4).119D28 | 448,268 |
(C2×C4).120D28 = C23.13D28 | φ: D28/D14 → C2 ⊆ Aut C2×C4 | 224 | | (C2xC4).120D28 | 448,271 |
(C2×C4).121D28 = C4.Dic28 | φ: D28/D14 → C2 ⊆ Aut C2×C4 | 448 | | (C2xC4).121D28 | 448,38 |
(C2×C4).122D28 = C28.47D8 | φ: D28/D14 → C2 ⊆ Aut C2×C4 | 448 | | (C2xC4).122D28 | 448,39 |
(C2×C4).123D28 = C4.D56 | φ: D28/D14 → C2 ⊆ Aut C2×C4 | 224 | | (C2xC4).123D28 | 448,42 |
(C2×C4).124D28 = C28.2D8 | φ: D28/D14 → C2 ⊆ Aut C2×C4 | 448 | | (C2xC4).124D28 | 448,43 |
(C2×C4).125D28 = C28.C42 | φ: D28/D14 → C2 ⊆ Aut C2×C4 | 448 | | (C2xC4).125D28 | 448,86 |
(C2×C4).126D28 = C28.2C42 | φ: D28/D14 → C2 ⊆ Aut C2×C4 | 112 | | (C2xC4).126D28 | 448,89 |
(C2×C4).127D28 = (C2×C28).Q8 | φ: D28/D14 → C2 ⊆ Aut C2×C4 | 112 | 4 | (C2xC4).127D28 | 448,90 |
(C2×C4).128D28 = M4(2)⋊Dic7 | φ: D28/D14 → C2 ⊆ Aut C2×C4 | 224 | | (C2xC4).128D28 | 448,111 |
(C2×C4).129D28 = C28.4C42 | φ: D28/D14 → C2 ⊆ Aut C2×C4 | 224 | | (C2xC4).129D28 | 448,115 |
(C2×C4).130D28 = M4(2)⋊4Dic7 | φ: D28/D14 → C2 ⊆ Aut C2×C4 | 112 | 4 | (C2xC4).130D28 | 448,116 |
(C2×C4).131D28 = C28⋊SD16 | φ: D28/D14 → C2 ⊆ Aut C2×C4 | 224 | | (C2xC4).131D28 | 448,375 |
(C2×C4).132D28 = D28⋊3Q8 | φ: D28/D14 → C2 ⊆ Aut C2×C4 | 224 | | (C2xC4).132D28 | 448,376 |
(C2×C4).133D28 = C4⋊D56 | φ: D28/D14 → C2 ⊆ Aut C2×C4 | 224 | | (C2xC4).133D28 | 448,377 |
(C2×C4).134D28 = D28⋊4Q8 | φ: D28/D14 → C2 ⊆ Aut C2×C4 | 224 | | (C2xC4).134D28 | 448,380 |
(C2×C4).135D28 = Dic14⋊8D4 | φ: D28/D14 → C2 ⊆ Aut C2×C4 | 224 | | (C2xC4).135D28 | 448,382 |
(C2×C4).136D28 = C4⋊Dic28 | φ: D28/D14 → C2 ⊆ Aut C2×C4 | 448 | | (C2xC4).136D28 | 448,383 |
(C2×C4).137D28 = C28.7Q16 | φ: D28/D14 → C2 ⊆ Aut C2×C4 | 448 | | (C2xC4).137D28 | 448,384 |
(C2×C4).138D28 = Dic14⋊4Q8 | φ: D28/D14 → C2 ⊆ Aut C2×C4 | 448 | | (C2xC4).138D28 | 448,385 |
(C2×C4).139D28 = C2×C14.D8 | φ: D28/D14 → C2 ⊆ Aut C2×C4 | 224 | | (C2xC4).139D28 | 448,499 |
(C2×C4).140D28 = C2×C14.Q16 | φ: D28/D14 → C2 ⊆ Aut C2×C4 | 448 | | (C2xC4).140D28 | 448,503 |
(C2×C4).141D28 = (C2×Dic7)⋊6Q8 | φ: D28/D14 → C2 ⊆ Aut C2×C4 | 448 | | (C2xC4).141D28 | 448,508 |
(C2×C4).142D28 = C4⋊(C4⋊Dic7) | φ: D28/D14 → C2 ⊆ Aut C2×C4 | 448 | | (C2xC4).142D28 | 448,519 |
(C2×C4).143D28 = C4⋊(D14⋊C4) | φ: D28/D14 → C2 ⊆ Aut C2×C4 | 224 | | (C2xC4).143D28 | 448,521 |
(C2×C4).144D28 = (C2×D28)⋊10C4 | φ: D28/D14 → C2 ⊆ Aut C2×C4 | 224 | | (C2xC4).144D28 | 448,522 |
(C2×C4).145D28 = C42.43D14 | φ: D28/D14 → C2 ⊆ Aut C2×C4 | 224 | | (C2xC4).145D28 | 448,533 |
(C2×C4).146D28 = C4.(C2×D28) | φ: D28/D14 → C2 ⊆ Aut C2×C4 | 224 | | (C2xC4).146D28 | 448,536 |
(C2×C4).147D28 = C42⋊4D14 | φ: D28/D14 → C2 ⊆ Aut C2×C4 | 112 | 4 | (C2xC4).147D28 | 448,539 |
(C2×C4).148D28 = C23.46D28 | φ: D28/D14 → C2 ⊆ Aut C2×C4 | 224 | | (C2xC4).148D28 | 448,654 |
(C2×C4).149D28 = C23.47D28 | φ: D28/D14 → C2 ⊆ Aut C2×C4 | 224 | | (C2xC4).149D28 | 448,655 |
(C2×C4).150D28 = M4(2).Dic7 | φ: D28/D14 → C2 ⊆ Aut C2×C4 | 112 | 4 | (C2xC4).150D28 | 448,659 |
(C2×C4).151D28 = D14⋊6M4(2) | φ: D28/D14 → C2 ⊆ Aut C2×C4 | 112 | | (C2xC4).151D28 | 448,660 |
(C2×C4).152D28 = (C2×D28).14C4 | φ: D28/D14 → C2 ⊆ Aut C2×C4 | 224 | | (C2xC4).152D28 | 448,663 |
(C2×C4).153D28 = C23.48D28 | φ: D28/D14 → C2 ⊆ Aut C2×C4 | 112 | | (C2xC4).153D28 | 448,665 |
(C2×C4).154D28 = C23.49D28 | φ: D28/D14 → C2 ⊆ Aut C2×C4 | 224 | | (C2xC4).154D28 | 448,667 |
(C2×C4).155D28 = C2×D28⋊4C4 | φ: D28/D14 → C2 ⊆ Aut C2×C4 | 112 | | (C2xC4).155D28 | 448,672 |
(C2×C4).156D28 = C2×D14⋊2Q8 | φ: D28/D14 → C2 ⊆ Aut C2×C4 | 224 | | (C2xC4).156D28 | 448,962 |
(C2×C4).157D28 = C56.9C23 | φ: D28/D14 → C2 ⊆ Aut C2×C4 | 112 | 4 | (C2xC4).157D28 | 448,1201 |
(C2×C4).158D28 = C4.8Dic28 | central extension (φ=1) | 448 | | (C2xC4).158D28 | 448,13 |
(C2×C4).159D28 = C56⋊2C8 | central extension (φ=1) | 448 | | (C2xC4).159D28 | 448,14 |
(C2×C4).160D28 = C56⋊1C8 | central extension (φ=1) | 448 | | (C2xC4).160D28 | 448,15 |
(C2×C4).161D28 = C4.17D56 | central extension (φ=1) | 224 | | (C2xC4).161D28 | 448,16 |
(C2×C4).162D28 = C28.8C42 | central extension (φ=1) | 112 | | (C2xC4).162D28 | 448,80 |
(C2×C4).163D28 = (C2×C28)⋊3C8 | central extension (φ=1) | 448 | | (C2xC4).163D28 | 448,81 |
(C2×C4).164D28 = (C2×C56)⋊5C4 | central extension (φ=1) | 448 | | (C2xC4).164D28 | 448,107 |
(C2×C4).165D28 = C28.10C42 | central extension (φ=1) | 224 | | (C2xC4).165D28 | 448,109 |
(C2×C4).166D28 = C2×C28⋊C8 | central extension (φ=1) | 448 | | (C2xC4).166D28 | 448,457 |
(C2×C4).167D28 = C4×C4⋊Dic7 | central extension (φ=1) | 448 | | (C2xC4).167D28 | 448,468 |
(C2×C4).168D28 = C4×D14⋊C4 | central extension (φ=1) | 224 | | (C2xC4).168D28 | 448,472 |
(C2×C4).169D28 = C23.22D28 | central extension (φ=1) | 224 | | (C2xC4).169D28 | 448,640 |
(C2×C4).170D28 = C2×C56.C4 | central extension (φ=1) | 224 | | (C2xC4).170D28 | 448,641 |
(C2×C4).171D28 = C2×D14⋊C8 | central extension (φ=1) | 224 | | (C2xC4).171D28 | 448,642 |
(C2×C4).172D28 = C23.23D28 | central extension (φ=1) | 224 | | (C2xC4).172D28 | 448,647 |