direct product, metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C2×C28⋊7D4, C23⋊4D28, C24.71D14, (C2×C28)⋊37D4, C28⋊15(C2×D4), (C23×C4)⋊5D7, (C23×C28)⋊8C2, C22⋊2(C2×D28), C14⋊3(C4⋊D4), (C22×C4)⋊44D14, (C22×C14)⋊15D4, D14⋊C4⋊42C22, (C2×D28)⋊50C22, (C22×D28)⋊12C2, C4⋊Dic7⋊64C22, C2.33(C22×D28), (C2×C14).288C24, (C2×C28).705C23, (C22×C28)⋊60C22, C14.134(C22×D4), C22.83(C4○D28), (C23×D7).75C22, C23.234(C22×D7), C22.303(C23×D7), (C23×C14).110C22, (C22×C14).417C23, (C2×Dic7).150C23, (C22×D7).126C23, (C22×Dic7).162C22, C4⋊4(C2×C7⋊D4), C7⋊4(C2×C4⋊D4), (C2×C14)⋊11(C2×D4), (C2×D14⋊C4)⋊14C2, (C2×C4)⋊16(C7⋊D4), (C2×C4⋊Dic7)⋊29C2, C14.63(C2×C4○D4), C2.71(C2×C4○D28), C2.7(C22×C7⋊D4), (C2×C7⋊D4)⋊42C22, (C22×C7⋊D4)⋊11C2, (C2×C4).658(C22×D7), C22.104(C2×C7⋊D4), (C2×C14).114(C4○D4), SmallGroup(448,1243)
Series: Derived ►Chief ►Lower central ►Upper central
Subgroups: 2116 in 426 conjugacy classes, 143 normal (23 characteristic)
C1, C2 [×3], C2 [×4], C2 [×8], C4 [×4], C4 [×6], C22, C22 [×10], C22 [×32], C7, C2×C4 [×8], C2×C4 [×18], D4 [×24], C23, C23 [×6], C23 [×20], D7 [×4], C14 [×3], C14 [×4], C14 [×4], C22⋊C4 [×8], C4⋊C4 [×4], C22×C4 [×2], C22×C4 [×4], C22×C4 [×6], C2×D4 [×24], C24, C24 [×2], Dic7 [×4], C28 [×4], C28 [×2], D14 [×20], C2×C14, C2×C14 [×10], C2×C14 [×12], C2×C22⋊C4 [×2], C2×C4⋊C4, C4⋊D4 [×8], C23×C4, C22×D4 [×3], D28 [×8], C2×Dic7 [×4], C2×Dic7 [×4], C7⋊D4 [×16], C2×C28 [×8], C2×C28 [×10], C22×D7 [×4], C22×D7 [×12], C22×C14, C22×C14 [×6], C22×C14 [×4], C2×C4⋊D4, C4⋊Dic7 [×4], D14⋊C4 [×8], C2×D28 [×4], C2×D28 [×4], C22×Dic7 [×2], C2×C7⋊D4 [×8], C2×C7⋊D4 [×8], C22×C28 [×2], C22×C28 [×4], C22×C28 [×4], C23×D7 [×2], C23×C14, C2×C4⋊Dic7, C2×D14⋊C4 [×2], C28⋊7D4 [×8], C22×D28, C22×C7⋊D4 [×2], C23×C28, C2×C28⋊7D4
Quotients:
C1, C2 [×15], C22 [×35], D4 [×8], C23 [×15], D7, C2×D4 [×12], C4○D4 [×2], C24, D14 [×7], C4⋊D4 [×4], C22×D4 [×2], C2×C4○D4, D28 [×4], C7⋊D4 [×4], C22×D7 [×7], C2×C4⋊D4, C2×D28 [×6], C4○D28 [×2], C2×C7⋊D4 [×6], C23×D7, C28⋊7D4 [×4], C22×D28, C2×C4○D28, C22×C7⋊D4, C2×C28⋊7D4
Generators and relations
G = < a,b,c,d | a2=b28=c4=d2=1, ab=ba, ac=ca, ad=da, cbc-1=dbd=b-1, dcd=c-1 >
(1 193)(2 194)(3 195)(4 196)(5 169)(6 170)(7 171)(8 172)(9 173)(10 174)(11 175)(12 176)(13 177)(14 178)(15 179)(16 180)(17 181)(18 182)(19 183)(20 184)(21 185)(22 186)(23 187)(24 188)(25 189)(26 190)(27 191)(28 192)(29 216)(30 217)(31 218)(32 219)(33 220)(34 221)(35 222)(36 223)(37 224)(38 197)(39 198)(40 199)(41 200)(42 201)(43 202)(44 203)(45 204)(46 205)(47 206)(48 207)(49 208)(50 209)(51 210)(52 211)(53 212)(54 213)(55 214)(56 215)(57 128)(58 129)(59 130)(60 131)(61 132)(62 133)(63 134)(64 135)(65 136)(66 137)(67 138)(68 139)(69 140)(70 113)(71 114)(72 115)(73 116)(74 117)(75 118)(76 119)(77 120)(78 121)(79 122)(80 123)(81 124)(82 125)(83 126)(84 127)(85 148)(86 149)(87 150)(88 151)(89 152)(90 153)(91 154)(92 155)(93 156)(94 157)(95 158)(96 159)(97 160)(98 161)(99 162)(100 163)(101 164)(102 165)(103 166)(104 167)(105 168)(106 141)(107 142)(108 143)(109 144)(110 145)(111 146)(112 147)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168)(169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196)(197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224)
(1 97 133 55)(2 96 134 54)(3 95 135 53)(4 94 136 52)(5 93 137 51)(6 92 138 50)(7 91 139 49)(8 90 140 48)(9 89 113 47)(10 88 114 46)(11 87 115 45)(12 86 116 44)(13 85 117 43)(14 112 118 42)(15 111 119 41)(16 110 120 40)(17 109 121 39)(18 108 122 38)(19 107 123 37)(20 106 124 36)(21 105 125 35)(22 104 126 34)(23 103 127 33)(24 102 128 32)(25 101 129 31)(26 100 130 30)(27 99 131 29)(28 98 132 56)(57 219 188 165)(58 218 189 164)(59 217 190 163)(60 216 191 162)(61 215 192 161)(62 214 193 160)(63 213 194 159)(64 212 195 158)(65 211 196 157)(66 210 169 156)(67 209 170 155)(68 208 171 154)(69 207 172 153)(70 206 173 152)(71 205 174 151)(72 204 175 150)(73 203 176 149)(74 202 177 148)(75 201 178 147)(76 200 179 146)(77 199 180 145)(78 198 181 144)(79 197 182 143)(80 224 183 142)(81 223 184 141)(82 222 185 168)(83 221 186 167)(84 220 187 166)
(1 41)(2 40)(3 39)(4 38)(5 37)(6 36)(7 35)(8 34)(9 33)(10 32)(11 31)(12 30)(13 29)(14 56)(15 55)(16 54)(17 53)(18 52)(19 51)(20 50)(21 49)(22 48)(23 47)(24 46)(25 45)(26 44)(27 43)(28 42)(57 151)(58 150)(59 149)(60 148)(61 147)(62 146)(63 145)(64 144)(65 143)(66 142)(67 141)(68 168)(69 167)(70 166)(71 165)(72 164)(73 163)(74 162)(75 161)(76 160)(77 159)(78 158)(79 157)(80 156)(81 155)(82 154)(83 153)(84 152)(85 131)(86 130)(87 129)(88 128)(89 127)(90 126)(91 125)(92 124)(93 123)(94 122)(95 121)(96 120)(97 119)(98 118)(99 117)(100 116)(101 115)(102 114)(103 113)(104 140)(105 139)(106 138)(107 137)(108 136)(109 135)(110 134)(111 133)(112 132)(169 224)(170 223)(171 222)(172 221)(173 220)(174 219)(175 218)(176 217)(177 216)(178 215)(179 214)(180 213)(181 212)(182 211)(183 210)(184 209)(185 208)(186 207)(187 206)(188 205)(189 204)(190 203)(191 202)(192 201)(193 200)(194 199)(195 198)(196 197)
G:=sub<Sym(224)| (1,193)(2,194)(3,195)(4,196)(5,169)(6,170)(7,171)(8,172)(9,173)(10,174)(11,175)(12,176)(13,177)(14,178)(15,179)(16,180)(17,181)(18,182)(19,183)(20,184)(21,185)(22,186)(23,187)(24,188)(25,189)(26,190)(27,191)(28,192)(29,216)(30,217)(31,218)(32,219)(33,220)(34,221)(35,222)(36,223)(37,224)(38,197)(39,198)(40,199)(41,200)(42,201)(43,202)(44,203)(45,204)(46,205)(47,206)(48,207)(49,208)(50,209)(51,210)(52,211)(53,212)(54,213)(55,214)(56,215)(57,128)(58,129)(59,130)(60,131)(61,132)(62,133)(63,134)(64,135)(65,136)(66,137)(67,138)(68,139)(69,140)(70,113)(71,114)(72,115)(73,116)(74,117)(75,118)(76,119)(77,120)(78,121)(79,122)(80,123)(81,124)(82,125)(83,126)(84,127)(85,148)(86,149)(87,150)(88,151)(89,152)(90,153)(91,154)(92,155)(93,156)(94,157)(95,158)(96,159)(97,160)(98,161)(99,162)(100,163)(101,164)(102,165)(103,166)(104,167)(105,168)(106,141)(107,142)(108,143)(109,144)(110,145)(111,146)(112,147), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196)(197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224), (1,97,133,55)(2,96,134,54)(3,95,135,53)(4,94,136,52)(5,93,137,51)(6,92,138,50)(7,91,139,49)(8,90,140,48)(9,89,113,47)(10,88,114,46)(11,87,115,45)(12,86,116,44)(13,85,117,43)(14,112,118,42)(15,111,119,41)(16,110,120,40)(17,109,121,39)(18,108,122,38)(19,107,123,37)(20,106,124,36)(21,105,125,35)(22,104,126,34)(23,103,127,33)(24,102,128,32)(25,101,129,31)(26,100,130,30)(27,99,131,29)(28,98,132,56)(57,219,188,165)(58,218,189,164)(59,217,190,163)(60,216,191,162)(61,215,192,161)(62,214,193,160)(63,213,194,159)(64,212,195,158)(65,211,196,157)(66,210,169,156)(67,209,170,155)(68,208,171,154)(69,207,172,153)(70,206,173,152)(71,205,174,151)(72,204,175,150)(73,203,176,149)(74,202,177,148)(75,201,178,147)(76,200,179,146)(77,199,180,145)(78,198,181,144)(79,197,182,143)(80,224,183,142)(81,223,184,141)(82,222,185,168)(83,221,186,167)(84,220,187,166), (1,41)(2,40)(3,39)(4,38)(5,37)(6,36)(7,35)(8,34)(9,33)(10,32)(11,31)(12,30)(13,29)(14,56)(15,55)(16,54)(17,53)(18,52)(19,51)(20,50)(21,49)(22,48)(23,47)(24,46)(25,45)(26,44)(27,43)(28,42)(57,151)(58,150)(59,149)(60,148)(61,147)(62,146)(63,145)(64,144)(65,143)(66,142)(67,141)(68,168)(69,167)(70,166)(71,165)(72,164)(73,163)(74,162)(75,161)(76,160)(77,159)(78,158)(79,157)(80,156)(81,155)(82,154)(83,153)(84,152)(85,131)(86,130)(87,129)(88,128)(89,127)(90,126)(91,125)(92,124)(93,123)(94,122)(95,121)(96,120)(97,119)(98,118)(99,117)(100,116)(101,115)(102,114)(103,113)(104,140)(105,139)(106,138)(107,137)(108,136)(109,135)(110,134)(111,133)(112,132)(169,224)(170,223)(171,222)(172,221)(173,220)(174,219)(175,218)(176,217)(177,216)(178,215)(179,214)(180,213)(181,212)(182,211)(183,210)(184,209)(185,208)(186,207)(187,206)(188,205)(189,204)(190,203)(191,202)(192,201)(193,200)(194,199)(195,198)(196,197)>;
G:=Group( (1,193)(2,194)(3,195)(4,196)(5,169)(6,170)(7,171)(8,172)(9,173)(10,174)(11,175)(12,176)(13,177)(14,178)(15,179)(16,180)(17,181)(18,182)(19,183)(20,184)(21,185)(22,186)(23,187)(24,188)(25,189)(26,190)(27,191)(28,192)(29,216)(30,217)(31,218)(32,219)(33,220)(34,221)(35,222)(36,223)(37,224)(38,197)(39,198)(40,199)(41,200)(42,201)(43,202)(44,203)(45,204)(46,205)(47,206)(48,207)(49,208)(50,209)(51,210)(52,211)(53,212)(54,213)(55,214)(56,215)(57,128)(58,129)(59,130)(60,131)(61,132)(62,133)(63,134)(64,135)(65,136)(66,137)(67,138)(68,139)(69,140)(70,113)(71,114)(72,115)(73,116)(74,117)(75,118)(76,119)(77,120)(78,121)(79,122)(80,123)(81,124)(82,125)(83,126)(84,127)(85,148)(86,149)(87,150)(88,151)(89,152)(90,153)(91,154)(92,155)(93,156)(94,157)(95,158)(96,159)(97,160)(98,161)(99,162)(100,163)(101,164)(102,165)(103,166)(104,167)(105,168)(106,141)(107,142)(108,143)(109,144)(110,145)(111,146)(112,147), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196)(197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224), (1,97,133,55)(2,96,134,54)(3,95,135,53)(4,94,136,52)(5,93,137,51)(6,92,138,50)(7,91,139,49)(8,90,140,48)(9,89,113,47)(10,88,114,46)(11,87,115,45)(12,86,116,44)(13,85,117,43)(14,112,118,42)(15,111,119,41)(16,110,120,40)(17,109,121,39)(18,108,122,38)(19,107,123,37)(20,106,124,36)(21,105,125,35)(22,104,126,34)(23,103,127,33)(24,102,128,32)(25,101,129,31)(26,100,130,30)(27,99,131,29)(28,98,132,56)(57,219,188,165)(58,218,189,164)(59,217,190,163)(60,216,191,162)(61,215,192,161)(62,214,193,160)(63,213,194,159)(64,212,195,158)(65,211,196,157)(66,210,169,156)(67,209,170,155)(68,208,171,154)(69,207,172,153)(70,206,173,152)(71,205,174,151)(72,204,175,150)(73,203,176,149)(74,202,177,148)(75,201,178,147)(76,200,179,146)(77,199,180,145)(78,198,181,144)(79,197,182,143)(80,224,183,142)(81,223,184,141)(82,222,185,168)(83,221,186,167)(84,220,187,166), (1,41)(2,40)(3,39)(4,38)(5,37)(6,36)(7,35)(8,34)(9,33)(10,32)(11,31)(12,30)(13,29)(14,56)(15,55)(16,54)(17,53)(18,52)(19,51)(20,50)(21,49)(22,48)(23,47)(24,46)(25,45)(26,44)(27,43)(28,42)(57,151)(58,150)(59,149)(60,148)(61,147)(62,146)(63,145)(64,144)(65,143)(66,142)(67,141)(68,168)(69,167)(70,166)(71,165)(72,164)(73,163)(74,162)(75,161)(76,160)(77,159)(78,158)(79,157)(80,156)(81,155)(82,154)(83,153)(84,152)(85,131)(86,130)(87,129)(88,128)(89,127)(90,126)(91,125)(92,124)(93,123)(94,122)(95,121)(96,120)(97,119)(98,118)(99,117)(100,116)(101,115)(102,114)(103,113)(104,140)(105,139)(106,138)(107,137)(108,136)(109,135)(110,134)(111,133)(112,132)(169,224)(170,223)(171,222)(172,221)(173,220)(174,219)(175,218)(176,217)(177,216)(178,215)(179,214)(180,213)(181,212)(182,211)(183,210)(184,209)(185,208)(186,207)(187,206)(188,205)(189,204)(190,203)(191,202)(192,201)(193,200)(194,199)(195,198)(196,197) );
G=PermutationGroup([(1,193),(2,194),(3,195),(4,196),(5,169),(6,170),(7,171),(8,172),(9,173),(10,174),(11,175),(12,176),(13,177),(14,178),(15,179),(16,180),(17,181),(18,182),(19,183),(20,184),(21,185),(22,186),(23,187),(24,188),(25,189),(26,190),(27,191),(28,192),(29,216),(30,217),(31,218),(32,219),(33,220),(34,221),(35,222),(36,223),(37,224),(38,197),(39,198),(40,199),(41,200),(42,201),(43,202),(44,203),(45,204),(46,205),(47,206),(48,207),(49,208),(50,209),(51,210),(52,211),(53,212),(54,213),(55,214),(56,215),(57,128),(58,129),(59,130),(60,131),(61,132),(62,133),(63,134),(64,135),(65,136),(66,137),(67,138),(68,139),(69,140),(70,113),(71,114),(72,115),(73,116),(74,117),(75,118),(76,119),(77,120),(78,121),(79,122),(80,123),(81,124),(82,125),(83,126),(84,127),(85,148),(86,149),(87,150),(88,151),(89,152),(90,153),(91,154),(92,155),(93,156),(94,157),(95,158),(96,159),(97,160),(98,161),(99,162),(100,163),(101,164),(102,165),(103,166),(104,167),(105,168),(106,141),(107,142),(108,143),(109,144),(110,145),(111,146),(112,147)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168),(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196),(197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224)], [(1,97,133,55),(2,96,134,54),(3,95,135,53),(4,94,136,52),(5,93,137,51),(6,92,138,50),(7,91,139,49),(8,90,140,48),(9,89,113,47),(10,88,114,46),(11,87,115,45),(12,86,116,44),(13,85,117,43),(14,112,118,42),(15,111,119,41),(16,110,120,40),(17,109,121,39),(18,108,122,38),(19,107,123,37),(20,106,124,36),(21,105,125,35),(22,104,126,34),(23,103,127,33),(24,102,128,32),(25,101,129,31),(26,100,130,30),(27,99,131,29),(28,98,132,56),(57,219,188,165),(58,218,189,164),(59,217,190,163),(60,216,191,162),(61,215,192,161),(62,214,193,160),(63,213,194,159),(64,212,195,158),(65,211,196,157),(66,210,169,156),(67,209,170,155),(68,208,171,154),(69,207,172,153),(70,206,173,152),(71,205,174,151),(72,204,175,150),(73,203,176,149),(74,202,177,148),(75,201,178,147),(76,200,179,146),(77,199,180,145),(78,198,181,144),(79,197,182,143),(80,224,183,142),(81,223,184,141),(82,222,185,168),(83,221,186,167),(84,220,187,166)], [(1,41),(2,40),(3,39),(4,38),(5,37),(6,36),(7,35),(8,34),(9,33),(10,32),(11,31),(12,30),(13,29),(14,56),(15,55),(16,54),(17,53),(18,52),(19,51),(20,50),(21,49),(22,48),(23,47),(24,46),(25,45),(26,44),(27,43),(28,42),(57,151),(58,150),(59,149),(60,148),(61,147),(62,146),(63,145),(64,144),(65,143),(66,142),(67,141),(68,168),(69,167),(70,166),(71,165),(72,164),(73,163),(74,162),(75,161),(76,160),(77,159),(78,158),(79,157),(80,156),(81,155),(82,154),(83,153),(84,152),(85,131),(86,130),(87,129),(88,128),(89,127),(90,126),(91,125),(92,124),(93,123),(94,122),(95,121),(96,120),(97,119),(98,118),(99,117),(100,116),(101,115),(102,114),(103,113),(104,140),(105,139),(106,138),(107,137),(108,136),(109,135),(110,134),(111,133),(112,132),(169,224),(170,223),(171,222),(172,221),(173,220),(174,219),(175,218),(176,217),(177,216),(178,215),(179,214),(180,213),(181,212),(182,211),(183,210),(184,209),(185,208),(186,207),(187,206),(188,205),(189,204),(190,203),(191,202),(192,201),(193,200),(194,199),(195,198),(196,197)])
Matrix representation ►G ⊆ GL5(𝔽29)
28 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 |
0 | 19 | 0 | 0 | 0 |
0 | 28 | 26 | 0 | 0 |
0 | 0 | 0 | 21 | 25 |
0 | 0 | 0 | 4 | 20 |
28 | 0 | 0 | 0 | 0 |
0 | 28 | 7 | 0 | 0 |
0 | 8 | 1 | 0 | 0 |
0 | 0 | 0 | 25 | 9 |
0 | 0 | 0 | 8 | 4 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 22 | 0 | 0 |
0 | 0 | 28 | 0 | 0 |
0 | 0 | 0 | 4 | 20 |
0 | 0 | 0 | 21 | 25 |
G:=sub<GL(5,GF(29))| [28,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,19,28,0,0,0,0,26,0,0,0,0,0,21,4,0,0,0,25,20],[28,0,0,0,0,0,28,8,0,0,0,7,1,0,0,0,0,0,25,8,0,0,0,9,4],[1,0,0,0,0,0,1,0,0,0,0,22,28,0,0,0,0,0,4,21,0,0,0,20,25] >;
124 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | 2I | 2J | 2K | 2L | 2M | 2N | 2O | 4A | ··· | 4H | 4I | 4J | 4K | 4L | 7A | 7B | 7C | 14A | ··· | 14AS | 28A | ··· | 28AV |
order | 1 | 2 | ··· | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 4 | 4 | 4 | 4 | 7 | 7 | 7 | 14 | ··· | 14 | 28 | ··· | 28 |
size | 1 | 1 | ··· | 1 | 2 | 2 | 2 | 2 | 28 | 28 | 28 | 28 | 2 | ··· | 2 | 28 | 28 | 28 | 28 | 2 | 2 | 2 | 2 | ··· | 2 | 2 | ··· | 2 |
124 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | |||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | D4 | D4 | D7 | C4○D4 | D14 | D14 | C7⋊D4 | D28 | C4○D28 |
kernel | C2×C28⋊7D4 | C2×C4⋊Dic7 | C2×D14⋊C4 | C28⋊7D4 | C22×D28 | C22×C7⋊D4 | C23×C28 | C2×C28 | C22×C14 | C23×C4 | C2×C14 | C22×C4 | C24 | C2×C4 | C23 | C22 |
# reps | 1 | 1 | 2 | 8 | 1 | 2 | 1 | 4 | 4 | 3 | 4 | 18 | 3 | 24 | 24 | 24 |
In GAP, Magma, Sage, TeX
C_2\times C_{28}\rtimes_7D_4
% in TeX
G:=Group("C2xC28:7D4");
// GroupNames label
G:=SmallGroup(448,1243);
// by ID
G=gap.SmallGroup(448,1243);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,758,184,675,18822]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^28=c^4=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c^-1=d*b*d=b^-1,d*c*d=c^-1>;
// generators/relations