extension | φ:Q→Out N | d | ρ | Label | ID |
(C2×Dic3).1D10 = Dic5.1Dic6 | φ: D10/C5 → C22 ⊆ Out C2×Dic3 | 480 | | (C2xDic3).1D10 | 480,410 |
(C2×Dic3).2D10 = Dic5.2Dic6 | φ: D10/C5 → C22 ⊆ Out C2×Dic3 | 480 | | (C2xDic3).2D10 | 480,411 |
(C2×Dic3).3D10 = C4⋊Dic3⋊D5 | φ: D10/C5 → C22 ⊆ Out C2×Dic3 | 240 | | (C2xDic3).3D10 | 480,413 |
(C2×Dic3).4D10 = C4⋊Dic5⋊S3 | φ: D10/C5 → C22 ⊆ Out C2×Dic3 | 240 | | (C2xDic3).4D10 | 480,421 |
(C2×Dic3).5D10 = Dic3⋊C4⋊D5 | φ: D10/C5 → C22 ⊆ Out C2×Dic3 | 240 | | (C2xDic3).5D10 | 480,424 |
(C2×Dic3).6D10 = D10⋊Dic6 | φ: D10/C5 → C22 ⊆ Out C2×Dic3 | 240 | | (C2xDic3).6D10 | 480,425 |
(C2×Dic3).7D10 = Dic5.8D12 | φ: D10/C5 → C22 ⊆ Out C2×Dic3 | 240 | | (C2xDic3).7D10 | 480,426 |
(C2×Dic3).8D10 = D30.34D4 | φ: D10/C5 → C22 ⊆ Out C2×Dic3 | 240 | | (C2xDic3).8D10 | 480,430 |
(C2×Dic3).9D10 = D30.35D4 | φ: D10/C5 → C22 ⊆ Out C2×Dic3 | 240 | | (C2xDic3).9D10 | 480,431 |
(C2×Dic3).10D10 = C60.67D4 | φ: D10/C5 → C22 ⊆ Out C2×Dic3 | 240 | | (C2xDic3).10D10 | 480,435 |
(C2×Dic3).11D10 = C60.68D4 | φ: D10/C5 → C22 ⊆ Out C2×Dic3 | 240 | | (C2xDic3).11D10 | 480,436 |
(C2×Dic3).12D10 = (C2×C12).D10 | φ: D10/C5 → C22 ⊆ Out C2×Dic3 | 240 | | (C2xDic3).12D10 | 480,437 |
(C2×Dic3).13D10 = (C2×C60).C22 | φ: D10/C5 → C22 ⊆ Out C2×Dic3 | 240 | | (C2xDic3).13D10 | 480,438 |
(C2×Dic3).14D10 = (C4×Dic15)⋊C2 | φ: D10/C5 → C22 ⊆ Out C2×Dic3 | 240 | | (C2xDic3).14D10 | 480,442 |
(C2×Dic3).15D10 = D6⋊Dic5.C2 | φ: D10/C5 → C22 ⊆ Out C2×Dic3 | 240 | | (C2xDic3).15D10 | 480,443 |
(C2×Dic3).16D10 = C60.88D4 | φ: D10/C5 → C22 ⊆ Out C2×Dic3 | 240 | | (C2xDic3).16D10 | 480,444 |
(C2×Dic3).17D10 = C5⋊(C42⋊3S3) | φ: D10/C5 → C22 ⊆ Out C2×Dic3 | 240 | | (C2xDic3).17D10 | 480,448 |
(C2×Dic3).18D10 = C60.70D4 | φ: D10/C5 → C22 ⊆ Out C2×Dic3 | 240 | | (C2xDic3).18D10 | 480,451 |
(C2×Dic3).19D10 = Dic5⋊Dic6 | φ: D10/C5 → C22 ⊆ Out C2×Dic3 | 480 | | (C2xDic3).19D10 | 480,452 |
(C2×Dic3).20D10 = D30⋊8Q8 | φ: D10/C5 → C22 ⊆ Out C2×Dic3 | 240 | | (C2xDic3).20D10 | 480,453 |
(C2×Dic3).21D10 = Dic5.7Dic6 | φ: D10/C5 → C22 ⊆ Out C2×Dic3 | 480 | | (C2xDic3).21D10 | 480,454 |
(C2×Dic3).22D10 = Dic15.4Q8 | φ: D10/C5 → C22 ⊆ Out C2×Dic3 | 480 | | (C2xDic3).22D10 | 480,458 |
(C2×Dic3).23D10 = D30⋊9Q8 | φ: D10/C5 → C22 ⊆ Out C2×Dic3 | 240 | | (C2xDic3).23D10 | 480,459 |
(C2×Dic3).24D10 = C12.Dic10 | φ: D10/C5 → C22 ⊆ Out C2×Dic3 | 480 | | (C2xDic3).24D10 | 480,460 |
(C2×Dic3).25D10 = Dic15⋊8Q8 | φ: D10/C5 → C22 ⊆ Out C2×Dic3 | 480 | | (C2xDic3).25D10 | 480,461 |
(C2×Dic3).26D10 = (C4×Dic5)⋊S3 | φ: D10/C5 → C22 ⊆ Out C2×Dic3 | 240 | | (C2xDic3).26D10 | 480,463 |
(C2×Dic3).27D10 = C20.Dic6 | φ: D10/C5 → C22 ⊆ Out C2×Dic3 | 480 | | (C2xDic3).27D10 | 480,464 |
(C2×Dic3).28D10 = D30⋊10Q8 | φ: D10/C5 → C22 ⊆ Out C2×Dic3 | 240 | | (C2xDic3).28D10 | 480,466 |
(C2×Dic3).29D10 = (C6×D5).D4 | φ: D10/C5 → C22 ⊆ Out C2×Dic3 | 240 | | (C2xDic3).29D10 | 480,483 |
(C2×Dic3).30D10 = D6⋊1Dic10 | φ: D10/C5 → C22 ⊆ Out C2×Dic3 | 240 | | (C2xDic3).30D10 | 480,486 |
(C2×Dic3).31D10 = D30⋊Q8 | φ: D10/C5 → C22 ⊆ Out C2×Dic3 | 240 | | (C2xDic3).31D10 | 480,487 |
(C2×Dic3).32D10 = D10.16D12 | φ: D10/C5 → C22 ⊆ Out C2×Dic3 | 240 | | (C2xDic3).32D10 | 480,489 |
(C2×Dic3).33D10 = D6⋊2Dic10 | φ: D10/C5 → C22 ⊆ Out C2×Dic3 | 240 | | (C2xDic3).33D10 | 480,493 |
(C2×Dic3).34D10 = D30⋊2Q8 | φ: D10/C5 → C22 ⊆ Out C2×Dic3 | 240 | | (C2xDic3).34D10 | 480,495 |
(C2×Dic3).35D10 = D30⋊3Q8 | φ: D10/C5 → C22 ⊆ Out C2×Dic3 | 240 | | (C2xDic3).35D10 | 480,500 |
(C2×Dic3).36D10 = D6.D20 | φ: D10/C5 → C22 ⊆ Out C2×Dic3 | 240 | | (C2xDic3).36D10 | 480,503 |
(C2×Dic3).37D10 = D30⋊4Q8 | φ: D10/C5 → C22 ⊆ Out C2×Dic3 | 240 | | (C2xDic3).37D10 | 480,505 |
(C2×Dic3).38D10 = Dic15.D4 | φ: D10/C5 → C22 ⊆ Out C2×Dic3 | 240 | | (C2xDic3).38D10 | 480,506 |
(C2×Dic3).39D10 = D10⋊4Dic6 | φ: D10/C5 → C22 ⊆ Out C2×Dic3 | 240 | | (C2xDic3).39D10 | 480,507 |
(C2×Dic3).40D10 = D6⋊3Dic10 | φ: D10/C5 → C22 ⊆ Out C2×Dic3 | 240 | | (C2xDic3).40D10 | 480,508 |
(C2×Dic3).41D10 = D6⋊4Dic10 | φ: D10/C5 → C22 ⊆ Out C2×Dic3 | 240 | | (C2xDic3).41D10 | 480,512 |
(C2×Dic3).42D10 = D6⋊C4⋊D5 | φ: D10/C5 → C22 ⊆ Out C2×Dic3 | 240 | | (C2xDic3).42D10 | 480,523 |
(C2×Dic3).43D10 = D10⋊D12 | φ: D10/C5 → C22 ⊆ Out C2×Dic3 | 240 | | (C2xDic3).43D10 | 480,524 |
(C2×Dic3).44D10 = C12⋊7D20 | φ: D10/C5 → C22 ⊆ Out C2×Dic3 | 240 | | (C2xDic3).44D10 | 480,526 |
(C2×Dic3).45D10 = D6.9D20 | φ: D10/C5 → C22 ⊆ Out C2×Dic3 | 240 | | (C2xDic3).45D10 | 480,533 |
(C2×Dic3).46D10 = D30⋊2D4 | φ: D10/C5 → C22 ⊆ Out C2×Dic3 | 240 | | (C2xDic3).46D10 | 480,535 |
(C2×Dic3).47D10 = D30⋊12D4 | φ: D10/C5 → C22 ⊆ Out C2×Dic3 | 240 | | (C2xDic3).47D10 | 480,537 |
(C2×Dic3).48D10 = Dic15.31D4 | φ: D10/C5 → C22 ⊆ Out C2×Dic3 | 240 | | (C2xDic3).48D10 | 480,540 |
(C2×Dic3).49D10 = C12⋊2D20 | φ: D10/C5 → C22 ⊆ Out C2×Dic3 | 240 | | (C2xDic3).49D10 | 480,541 |
(C2×Dic3).50D10 = C60⋊Q8 | φ: D10/C5 → C22 ⊆ Out C2×Dic3 | 480 | | (C2xDic3).50D10 | 480,544 |
(C2×Dic3).51D10 = C20⋊Dic6 | φ: D10/C5 → C22 ⊆ Out C2×Dic3 | 480 | | (C2xDic3).51D10 | 480,546 |
(C2×Dic3).52D10 = C23.13(S3×D5) | φ: D10/C5 → C22 ⊆ Out C2×Dic3 | 240 | | (C2xDic3).52D10 | 480,606 |
(C2×Dic3).53D10 = C23.14(S3×D5) | φ: D10/C5 → C22 ⊆ Out C2×Dic3 | 240 | | (C2xDic3).53D10 | 480,607 |
(C2×Dic3).54D10 = D30⋊6D4 | φ: D10/C5 → C22 ⊆ Out C2×Dic3 | 240 | | (C2xDic3).54D10 | 480,609 |
(C2×Dic3).55D10 = C6.(C2×D20) | φ: D10/C5 → C22 ⊆ Out C2×Dic3 | 240 | | (C2xDic3).55D10 | 480,613 |
(C2×Dic3).56D10 = C30.(C2×D4) | φ: D10/C5 → C22 ⊆ Out C2×Dic3 | 240 | | (C2xDic3).56D10 | 480,615 |
(C2×Dic3).57D10 = (C2×C10).D12 | φ: D10/C5 → C22 ⊆ Out C2×Dic3 | 240 | | (C2xDic3).57D10 | 480,619 |
(C2×Dic3).58D10 = C6.D4⋊D5 | φ: D10/C5 → C22 ⊆ Out C2×Dic3 | 240 | | (C2xDic3).58D10 | 480,622 |
(C2×Dic3).59D10 = C23.17(S3×D5) | φ: D10/C5 → C22 ⊆ Out C2×Dic3 | 240 | | (C2xDic3).59D10 | 480,624 |
(C2×Dic3).60D10 = Dic15⋊3D4 | φ: D10/C5 → C22 ⊆ Out C2×Dic3 | 240 | | (C2xDic3).60D10 | 480,626 |
(C2×Dic3).61D10 = (S3×C10).D4 | φ: D10/C5 → C22 ⊆ Out C2×Dic3 | 240 | | (C2xDic3).61D10 | 480,631 |
(C2×Dic3).62D10 = Dic15⋊4D4 | φ: D10/C5 → C22 ⊆ Out C2×Dic3 | 240 | | (C2xDic3).62D10 | 480,634 |
(C2×Dic3).63D10 = (S3×C10)⋊D4 | φ: D10/C5 → C22 ⊆ Out C2×Dic3 | 240 | | (C2xDic3).63D10 | 480,641 |
(C2×Dic3).64D10 = (C2×C10)⋊4D12 | φ: D10/C5 → C22 ⊆ Out C2×Dic3 | 240 | | (C2xDic3).64D10 | 480,642 |
(C2×Dic3).65D10 = Dic15⋊18D4 | φ: D10/C5 → C22 ⊆ Out C2×Dic3 | 240 | | (C2xDic3).65D10 | 480,647 |
(C2×Dic3).66D10 = (C2×C30)⋊Q8 | φ: D10/C5 → C22 ⊆ Out C2×Dic3 | 240 | | (C2xDic3).66D10 | 480,650 |
(C2×Dic3).67D10 = Dic15.48D4 | φ: D10/C5 → C22 ⊆ Out C2×Dic3 | 240 | | (C2xDic3).67D10 | 480,652 |
(C2×Dic3).68D10 = D20.38D6 | φ: D10/C5 → C22 ⊆ Out C2×Dic3 | 240 | 4 | (C2xDic3).68D10 | 480,1076 |
(C2×Dic3).69D10 = C15⋊2- 1+4 | φ: D10/C5 → C22 ⊆ Out C2×Dic3 | 240 | 8- | (C2xDic3).69D10 | 480,1096 |
(C2×Dic3).70D10 = Dic5⋊5Dic6 | φ: D10/D5 → C2 ⊆ Out C2×Dic3 | 480 | | (C2xDic3).70D10 | 480,399 |
(C2×Dic3).71D10 = Dic15⋊5Q8 | φ: D10/D5 → C2 ⊆ Out C2×Dic3 | 480 | | (C2xDic3).71D10 | 480,401 |
(C2×Dic3).72D10 = (C2×C20).D6 | φ: D10/D5 → C2 ⊆ Out C2×Dic3 | 240 | | (C2xDic3).72D10 | 480,402 |
(C2×Dic3).73D10 = Dic15⋊1Q8 | φ: D10/D5 → C2 ⊆ Out C2×Dic3 | 480 | | (C2xDic3).73D10 | 480,403 |
(C2×Dic3).74D10 = Dic3⋊Dic10 | φ: D10/D5 → C2 ⊆ Out C2×Dic3 | 480 | | (C2xDic3).74D10 | 480,404 |
(C2×Dic3).75D10 = Dic15⋊Q8 | φ: D10/D5 → C2 ⊆ Out C2×Dic3 | 480 | | (C2xDic3).75D10 | 480,405 |
(C2×Dic3).76D10 = Dic15⋊6Q8 | φ: D10/D5 → C2 ⊆ Out C2×Dic3 | 480 | | (C2xDic3).76D10 | 480,407 |
(C2×Dic3).77D10 = Dic5×Dic6 | φ: D10/D5 → C2 ⊆ Out C2×Dic3 | 480 | | (C2xDic3).77D10 | 480,408 |
(C2×Dic3).78D10 = Dic30⋊17C4 | φ: D10/D5 → C2 ⊆ Out C2×Dic3 | 480 | | (C2xDic3).78D10 | 480,409 |
(C2×Dic3).79D10 = Dic15.Q8 | φ: D10/D5 → C2 ⊆ Out C2×Dic3 | 480 | | (C2xDic3).79D10 | 480,412 |
(C2×Dic3).80D10 = Dic15.2Q8 | φ: D10/D5 → C2 ⊆ Out C2×Dic3 | 480 | | (C2xDic3).80D10 | 480,415 |
(C2×Dic3).81D10 = D6⋊C4.D5 | φ: D10/D5 → C2 ⊆ Out C2×Dic3 | 240 | | (C2xDic3).81D10 | 480,417 |
(C2×Dic3).82D10 = C60⋊5C4⋊C2 | φ: D10/D5 → C2 ⊆ Out C2×Dic3 | 240 | | (C2xDic3).82D10 | 480,418 |
(C2×Dic3).83D10 = Dic3.Dic10 | φ: D10/D5 → C2 ⊆ Out C2×Dic3 | 480 | | (C2xDic3).83D10 | 480,419 |
(C2×Dic3).84D10 = Dic15⋊7Q8 | φ: D10/D5 → C2 ⊆ Out C2×Dic3 | 480 | | (C2xDic3).84D10 | 480,420 |
(C2×Dic3).85D10 = Dic3.2Dic10 | φ: D10/D5 → C2 ⊆ Out C2×Dic3 | 480 | | (C2xDic3).85D10 | 480,422 |
(C2×Dic3).86D10 = (C4×D15)⋊8C4 | φ: D10/D5 → C2 ⊆ Out C2×Dic3 | 240 | | (C2xDic3).86D10 | 480,423 |
(C2×Dic3).87D10 = D30.D4 | φ: D10/D5 → C2 ⊆ Out C2×Dic3 | 240 | | (C2xDic3).87D10 | 480,432 |
(C2×Dic3).88D10 = (C4×D5)⋊Dic3 | φ: D10/D5 → C2 ⊆ Out C2×Dic3 | 240 | | (C2xDic3).88D10 | 480,434 |
(C2×Dic3).89D10 = D5×Dic3⋊C4 | φ: D10/D5 → C2 ⊆ Out C2×Dic3 | 240 | | (C2xDic3).89D10 | 480,468 |
(C2×Dic3).90D10 = D10.19(C4×S3) | φ: D10/D5 → C2 ⊆ Out C2×Dic3 | 240 | | (C2xDic3).90D10 | 480,470 |
(C2×Dic3).91D10 = Dic15⋊13D4 | φ: D10/D5 → C2 ⊆ Out C2×Dic3 | 240 | | (C2xDic3).91D10 | 480,472 |
(C2×Dic3).92D10 = D6.(C4×D5) | φ: D10/D5 → C2 ⊆ Out C2×Dic3 | 240 | | (C2xDic3).92D10 | 480,474 |
(C2×Dic3).93D10 = (S3×Dic5)⋊C4 | φ: D10/D5 → C2 ⊆ Out C2×Dic3 | 240 | | (C2xDic3).93D10 | 480,476 |
(C2×Dic3).94D10 = D30.C2⋊C4 | φ: D10/D5 → C2 ⊆ Out C2×Dic3 | 240 | | (C2xDic3).94D10 | 480,478 |
(C2×Dic3).95D10 = D30.Q8 | φ: D10/D5 → C2 ⊆ Out C2×Dic3 | 240 | | (C2xDic3).95D10 | 480,480 |
(C2×Dic3).96D10 = Dic5⋊4D12 | φ: D10/D5 → C2 ⊆ Out C2×Dic3 | 240 | | (C2xDic3).96D10 | 480,481 |
(C2×Dic3).97D10 = Dic15⋊14D4 | φ: D10/D5 → C2 ⊆ Out C2×Dic3 | 240 | | (C2xDic3).97D10 | 480,482 |
(C2×Dic3).98D10 = Dic15⋊D4 | φ: D10/D5 → C2 ⊆ Out C2×Dic3 | 240 | | (C2xDic3).98D10 | 480,484 |
(C2×Dic3).99D10 = Dic3⋊D20 | φ: D10/D5 → C2 ⊆ Out C2×Dic3 | 240 | | (C2xDic3).99D10 | 480,485 |
(C2×Dic3).100D10 = D5×C4⋊Dic3 | φ: D10/D5 → C2 ⊆ Out C2×Dic3 | 240 | | (C2xDic3).100D10 | 480,488 |
(C2×Dic3).101D10 = D10.17D12 | φ: D10/D5 → C2 ⊆ Out C2×Dic3 | 240 | | (C2xDic3).101D10 | 480,490 |
(C2×Dic3).102D10 = D60⋊17C4 | φ: D10/D5 → C2 ⊆ Out C2×Dic3 | 240 | | (C2xDic3).102D10 | 480,494 |
(C2×Dic3).103D10 = D30⋊D4 | φ: D10/D5 → C2 ⊆ Out C2×Dic3 | 240 | | (C2xDic3).103D10 | 480,496 |
(C2×Dic3).104D10 = D10⋊1Dic6 | φ: D10/D5 → C2 ⊆ Out C2×Dic3 | 240 | | (C2xDic3).104D10 | 480,497 |
(C2×Dic3).105D10 = D10⋊2Dic6 | φ: D10/D5 → C2 ⊆ Out C2×Dic3 | 240 | | (C2xDic3).105D10 | 480,498 |
(C2×Dic3).106D10 = D30.6D4 | φ: D10/D5 → C2 ⊆ Out C2×Dic3 | 240 | | (C2xDic3).106D10 | 480,509 |
(C2×Dic3).107D10 = D20⋊8Dic3 | φ: D10/D5 → C2 ⊆ Out C2×Dic3 | 240 | | (C2xDic3).107D10 | 480,510 |
(C2×Dic3).108D10 = D30.2Q8 | φ: D10/D5 → C2 ⊆ Out C2×Dic3 | 240 | | (C2xDic3).108D10 | 480,513 |
(C2×Dic3).109D10 = D30.7D4 | φ: D10/D5 → C2 ⊆ Out C2×Dic3 | 240 | | (C2xDic3).109D10 | 480,514 |
(C2×Dic3).110D10 = D6⋊(C4×D5) | φ: D10/D5 → C2 ⊆ Out C2×Dic3 | 240 | | (C2xDic3).110D10 | 480,516 |
(C2×Dic3).111D10 = Dic15⋊9D4 | φ: D10/D5 → C2 ⊆ Out C2×Dic3 | 240 | | (C2xDic3).111D10 | 480,518 |
(C2×Dic3).112D10 = C15⋊20(C4×D4) | φ: D10/D5 → C2 ⊆ Out C2×Dic3 | 240 | | (C2xDic3).112D10 | 480,520 |
(C2×Dic3).113D10 = (C2×Dic6)⋊D5 | φ: D10/D5 → C2 ⊆ Out C2×Dic3 | 240 | | (C2xDic3).113D10 | 480,531 |
(C2×Dic3).114D10 = Dic15.10D4 | φ: D10/D5 → C2 ⊆ Out C2×Dic3 | 240 | | (C2xDic3).114D10 | 480,538 |
(C2×Dic3).115D10 = C23.D5⋊S3 | φ: D10/D5 → C2 ⊆ Out C2×Dic3 | 240 | | (C2xDic3).115D10 | 480,601 |
(C2×Dic3).116D10 = Dic15.19D4 | φ: D10/D5 → C2 ⊆ Out C2×Dic3 | 240 | | (C2xDic3).116D10 | 480,602 |
(C2×Dic3).117D10 = (C6×Dic5)⋊7C4 | φ: D10/D5 → C2 ⊆ Out C2×Dic3 | 240 | | (C2xDic3).117D10 | 480,604 |
(C2×Dic3).118D10 = C23.48(S3×D5) | φ: D10/D5 → C2 ⊆ Out C2×Dic3 | 240 | | (C2xDic3).118D10 | 480,608 |
(C2×Dic3).119D10 = C6.(D4×D5) | φ: D10/D5 → C2 ⊆ Out C2×Dic3 | 240 | | (C2xDic3).119D10 | 480,610 |
(C2×Dic3).120D10 = (C6×D5)⋊D4 | φ: D10/D5 → C2 ⊆ Out C2×Dic3 | 240 | | (C2xDic3).120D10 | 480,625 |
(C2×Dic3).121D10 = Dic5×C3⋊D4 | φ: D10/D5 → C2 ⊆ Out C2×Dic3 | 240 | | (C2xDic3).121D10 | 480,627 |
(C2×Dic3).122D10 = C15⋊26(C4×D4) | φ: D10/D5 → C2 ⊆ Out C2×Dic3 | 240 | | (C2xDic3).122D10 | 480,628 |
(C2×Dic3).123D10 = D30⋊7D4 | φ: D10/D5 → C2 ⊆ Out C2×Dic3 | 240 | | (C2xDic3).123D10 | 480,633 |
(C2×Dic3).124D10 = Dic15⋊16D4 | φ: D10/D5 → C2 ⊆ Out C2×Dic3 | 240 | | (C2xDic3).124D10 | 480,635 |
(C2×Dic3).125D10 = Dic15⋊17D4 | φ: D10/D5 → C2 ⊆ Out C2×Dic3 | 240 | | (C2xDic3).125D10 | 480,636 |
(C2×Dic3).126D10 = D30.16D4 | φ: D10/D5 → C2 ⊆ Out C2×Dic3 | 240 | | (C2xDic3).126D10 | 480,638 |
(C2×Dic3).127D10 = Dic15⋊5D4 | φ: D10/D5 → C2 ⊆ Out C2×Dic3 | 240 | | (C2xDic3).127D10 | 480,643 |
(C2×Dic3).128D10 = C2×D5×Dic6 | φ: D10/D5 → C2 ⊆ Out C2×Dic3 | 240 | | (C2xDic3).128D10 | 480,1073 |
(C2×Dic3).129D10 = C2×D20⋊S3 | φ: D10/D5 → C2 ⊆ Out C2×Dic3 | 240 | | (C2xDic3).129D10 | 480,1075 |
(C2×Dic3).130D10 = C2×D15⋊Q8 | φ: D10/D5 → C2 ⊆ Out C2×Dic3 | 240 | | (C2xDic3).130D10 | 480,1082 |
(C2×Dic3).131D10 = C2×C12.28D10 | φ: D10/D5 → C2 ⊆ Out C2×Dic3 | 240 | | (C2xDic3).131D10 | 480,1085 |
(C2×Dic3).132D10 = C2×C30.C23 | φ: D10/D5 → C2 ⊆ Out C2×Dic3 | 240 | | (C2xDic3).132D10 | 480,1114 |
(C2×Dic3).133D10 = C2×Dic3.D10 | φ: D10/D5 → C2 ⊆ Out C2×Dic3 | 240 | | (C2xDic3).133D10 | 480,1116 |
(C2×Dic3).134D10 = D6⋊Dic5⋊C2 | φ: D10/C10 → C2 ⊆ Out C2×Dic3 | 240 | | (C2xDic3).134D10 | 480,427 |
(C2×Dic3).135D10 = D6⋊Dic10 | φ: D10/C10 → C2 ⊆ Out C2×Dic3 | 240 | | (C2xDic3).135D10 | 480,428 |
(C2×Dic3).136D10 = Dic3.D20 | φ: D10/C10 → C2 ⊆ Out C2×Dic3 | 240 | | (C2xDic3).136D10 | 480,429 |
(C2×Dic3).137D10 = (D5×C12)⋊C4 | φ: D10/C10 → C2 ⊆ Out C2×Dic3 | 240 | | (C2xDic3).137D10 | 480,433 |
(C2×Dic3).138D10 = (C4×Dic3)⋊D5 | φ: D10/C10 → C2 ⊆ Out C2×Dic3 | 240 | | (C2xDic3).138D10 | 480,439 |
(C2×Dic3).139D10 = C60.44D4 | φ: D10/C10 → C2 ⊆ Out C2×Dic3 | 240 | | (C2xDic3).139D10 | 480,440 |
(C2×Dic3).140D10 = C60.45D4 | φ: D10/C10 → C2 ⊆ Out C2×Dic3 | 240 | | (C2xDic3).140D10 | 480,441 |
(C2×Dic3).141D10 = C60.46D4 | φ: D10/C10 → C2 ⊆ Out C2×Dic3 | 240 | | (C2xDic3).141D10 | 480,445 |
(C2×Dic3).142D10 = (S3×C20)⋊7C4 | φ: D10/C10 → C2 ⊆ Out C2×Dic3 | 240 | | (C2xDic3).142D10 | 480,447 |
(C2×Dic3).143D10 = C60.47D4 | φ: D10/C10 → C2 ⊆ Out C2×Dic3 | 240 | | (C2xDic3).143D10 | 480,450 |
(C2×Dic3).144D10 = Dic3.3Dic10 | φ: D10/C10 → C2 ⊆ Out C2×Dic3 | 480 | | (C2xDic3).144D10 | 480,455 |
(C2×Dic3).145D10 = C10.D4⋊S3 | φ: D10/C10 → C2 ⊆ Out C2×Dic3 | 240 | | (C2xDic3).145D10 | 480,456 |
(C2×Dic3).146D10 = C60.6Q8 | φ: D10/C10 → C2 ⊆ Out C2×Dic3 | 480 | | (C2xDic3).146D10 | 480,457 |
(C2×Dic3).147D10 = (C4×D15)⋊10C4 | φ: D10/C10 → C2 ⊆ Out C2×Dic3 | 240 | | (C2xDic3).147D10 | 480,462 |
(C2×Dic3).148D10 = C60.48D4 | φ: D10/C10 → C2 ⊆ Out C2×Dic3 | 480 | | (C2xDic3).148D10 | 480,465 |
(C2×Dic3).149D10 = S3×C10.D4 | φ: D10/C10 → C2 ⊆ Out C2×Dic3 | 240 | | (C2xDic3).149D10 | 480,475 |
(C2×Dic3).150D10 = S3×C4⋊Dic5 | φ: D10/C10 → C2 ⊆ Out C2×Dic3 | 240 | | (C2xDic3).150D10 | 480,502 |
(C2×Dic3).151D10 = C4×C15⋊D4 | φ: D10/C10 → C2 ⊆ Out C2×Dic3 | 240 | | (C2xDic3).151D10 | 480,515 |
(C2×Dic3).152D10 = C4×C3⋊D20 | φ: D10/C10 → C2 ⊆ Out C2×Dic3 | 240 | | (C2xDic3).152D10 | 480,519 |
(C2×Dic3).153D10 = C4×C5⋊D12 | φ: D10/C10 → C2 ⊆ Out C2×Dic3 | 240 | | (C2xDic3).153D10 | 480,521 |
(C2×Dic3).154D10 = D10⋊C4⋊S3 | φ: D10/C10 → C2 ⊆ Out C2×Dic3 | 240 | | (C2xDic3).154D10 | 480,528 |
(C2×Dic3).155D10 = D6⋊D20 | φ: D10/C10 → C2 ⊆ Out C2×Dic3 | 240 | | (C2xDic3).155D10 | 480,530 |
(C2×Dic3).156D10 = C60⋊4D4 | φ: D10/C10 → C2 ⊆ Out C2×Dic3 | 240 | | (C2xDic3).156D10 | 480,532 |
(C2×Dic3).157D10 = C12⋊D20 | φ: D10/C10 → C2 ⊆ Out C2×Dic3 | 240 | | (C2xDic3).157D10 | 480,534 |
(C2×Dic3).158D10 = C60⋊6D4 | φ: D10/C10 → C2 ⊆ Out C2×Dic3 | 240 | | (C2xDic3).158D10 | 480,536 |
(C2×Dic3).159D10 = C4×C15⋊Q8 | φ: D10/C10 → C2 ⊆ Out C2×Dic3 | 480 | | (C2xDic3).159D10 | 480,543 |
(C2×Dic3).160D10 = C20⋊4Dic6 | φ: D10/C10 → C2 ⊆ Out C2×Dic3 | 480 | | (C2xDic3).160D10 | 480,545 |
(C2×Dic3).161D10 = (C2×C30).D4 | φ: D10/C10 → C2 ⊆ Out C2×Dic3 | 240 | | (C2xDic3).161D10 | 480,612 |
(C2×Dic3).162D10 = C2×C30.Q8 | φ: D10/C10 → C2 ⊆ Out C2×Dic3 | 480 | | (C2xDic3).162D10 | 480,617 |
(C2×Dic3).163D10 = C10.(C2×D12) | φ: D10/C10 → C2 ⊆ Out C2×Dic3 | 240 | | (C2xDic3).163D10 | 480,618 |
(C2×Dic3).164D10 = C2×Dic15⋊5C4 | φ: D10/C10 → C2 ⊆ Out C2×Dic3 | 480 | | (C2xDic3).164D10 | 480,620 |
(C2×Dic3).165D10 = C2×C6.Dic10 | φ: D10/C10 → C2 ⊆ Out C2×Dic3 | 480 | | (C2xDic3).165D10 | 480,621 |
(C2×Dic3).166D10 = (C2×C6)⋊D20 | φ: D10/C10 → C2 ⊆ Out C2×Dic3 | 240 | | (C2xDic3).166D10 | 480,645 |
(C2×Dic3).167D10 = (C2×C10)⋊8Dic6 | φ: D10/C10 → C2 ⊆ Out C2×Dic3 | 240 | | (C2xDic3).167D10 | 480,651 |
(C2×Dic3).168D10 = C2×S3×Dic10 | φ: D10/C10 → C2 ⊆ Out C2×Dic3 | 240 | | (C2xDic3).168D10 | 480,1078 |
(C2×Dic3).169D10 = C2×D6.D10 | φ: D10/C10 → C2 ⊆ Out C2×Dic3 | 240 | | (C2xDic3).169D10 | 480,1083 |
(C2×Dic3).170D10 = C22×C15⋊Q8 | φ: D10/C10 → C2 ⊆ Out C2×Dic3 | 480 | | (C2xDic3).170D10 | 480,1121 |
(C2×Dic3).171D10 = Dic3⋊5Dic10 | φ: trivial image | 480 | | (C2xDic3).171D10 | 480,400 |
(C2×Dic3).172D10 = Dic3×Dic10 | φ: trivial image | 480 | | (C2xDic3).172D10 | 480,406 |
(C2×Dic3).173D10 = (S3×C20)⋊5C4 | φ: trivial image | 240 | | (C2xDic3).173D10 | 480,414 |
(C2×Dic3).174D10 = Dic30⋊14C4 | φ: trivial image | 480 | | (C2xDic3).174D10 | 480,416 |
(C2×Dic3).175D10 = C4×D5×Dic3 | φ: trivial image | 240 | | (C2xDic3).175D10 | 480,467 |
(C2×Dic3).176D10 = (D5×Dic3)⋊C4 | φ: trivial image | 240 | | (C2xDic3).176D10 | 480,469 |
(C2×Dic3).177D10 = Dic3⋊4D20 | φ: trivial image | 240 | | (C2xDic3).177D10 | 480,471 |
(C2×Dic3).178D10 = C4×S3×Dic5 | φ: trivial image | 240 | | (C2xDic3).178D10 | 480,473 |
(C2×Dic3).179D10 = C4×D30.C2 | φ: trivial image | 240 | | (C2xDic3).179D10 | 480,477 |
(C2×Dic3).180D10 = D30.23(C2×C4) | φ: trivial image | 240 | | (C2xDic3).180D10 | 480,479 |
(C2×Dic3).181D10 = Dic3×D20 | φ: trivial image | 240 | | (C2xDic3).181D10 | 480,501 |
(C2×Dic3).182D10 = D60⋊14C4 | φ: trivial image | 240 | | (C2xDic3).182D10 | 480,504 |
(C2×Dic3).183D10 = C15⋊17(C4×D4) | φ: trivial image | 240 | | (C2xDic3).183D10 | 480,517 |
(C2×Dic3).184D10 = C15⋊22(C4×D4) | φ: trivial image | 240 | | (C2xDic3).184D10 | 480,522 |
(C2×Dic3).185D10 = C2×Dic3×Dic5 | φ: trivial image | 480 | | (C2xDic3).185D10 | 480,603 |
(C2×Dic3).186D10 = C23.26(S3×D5) | φ: trivial image | 240 | | (C2xDic3).186D10 | 480,605 |
(C2×Dic3).187D10 = Dic3×C5⋊D4 | φ: trivial image | 240 | | (C2xDic3).187D10 | 480,629 |
(C2×Dic3).188D10 = C15⋊28(C4×D4) | φ: trivial image | 240 | | (C2xDic3).188D10 | 480,632 |
(C2×Dic3).189D10 = C2×D20⋊5S3 | φ: trivial image | 240 | | (C2xDic3).189D10 | 480,1074 |
(C2×Dic3).190D10 = C2×D60⋊C2 | φ: trivial image | 240 | | (C2xDic3).190D10 | 480,1081 |