Extensions 1→N→G→Q→1 with N=S3xC10 and Q=D4

Direct product G=NxQ with N=S3xC10 and Q=D4
dρLabelID
S3xD4xC10120S3xD4xC10480,1154

Semidirect products G=N:Q with N=S3xC10 and Q=D4
extensionφ:Q→Out NdρLabelID
(S3xC10):1D4 = Dic5:D12φ: D4/C2C22 ⊆ Out S3xC10240(S3xC10):1D4480,492
(S3xC10):2D4 = Dic15:2D4φ: D4/C2C22 ⊆ Out S3xC10240(S3xC10):2D4480,529
(S3xC10):3D4 = D6:4D20φ: D4/C2C22 ⊆ Out S3xC10120(S3xC10):3D4480,550
(S3xC10):4D4 = D30:4D4φ: D4/C2C22 ⊆ Out S3xC10120(S3xC10):4D4480,551
(S3xC10):5D4 = D30:5D4φ: D4/C2C22 ⊆ Out S3xC10120(S3xC10):5D4480,552
(S3xC10):6D4 = Dic15:4D4φ: D4/C2C22 ⊆ Out S3xC10240(S3xC10):6D4480,634
(S3xC10):7D4 = (S3xC10):D4φ: D4/C2C22 ⊆ Out S3xC10240(S3xC10):7D4480,641
(S3xC10):8D4 = D30:8D4φ: D4/C2C22 ⊆ Out S3xC10120(S3xC10):8D4480,653
(S3xC10):9D4 = D6:D20φ: D4/C4C2 ⊆ Out S3xC10240(S3xC10):9D4480,530
(S3xC10):10D4 = C60:4D4φ: D4/C4C2 ⊆ Out S3xC10240(S3xC10):10D4480,532
(S3xC10):11D4 = C60:6D4φ: D4/C4C2 ⊆ Out S3xC10240(S3xC10):11D4480,536
(S3xC10):12D4 = C2xS3xD20φ: D4/C4C2 ⊆ Out S3xC10120(S3xC10):12D4480,1088
(S3xC10):13D4 = C5xDic3:D4φ: D4/C4C2 ⊆ Out S3xC10240(S3xC10):13D4480,763
(S3xC10):14D4 = C5xC12:D4φ: D4/C4C2 ⊆ Out S3xC10240(S3xC10):14D4480,774
(S3xC10):15D4 = C5xD6:3D4φ: D4/C4C2 ⊆ Out S3xC10240(S3xC10):15D4480,817
(S3xC10):16D4 = C15:C22wrC2φ: D4/C22C2 ⊆ Out S3xC10120(S3xC10):16D4480,644
(S3xC10):17D4 = (C2xC10):11D12φ: D4/C22C2 ⊆ Out S3xC10120(S3xC10):17D4480,646
(S3xC10):18D4 = C2xS3xC5:D4φ: D4/C22C2 ⊆ Out S3xC10120(S3xC10):18D4480,1123
(S3xC10):19D4 = C5xD6:D4φ: D4/C22C2 ⊆ Out S3xC10120(S3xC10):19D4480,761
(S3xC10):20D4 = C5xC23:2D6φ: D4/C22C2 ⊆ Out S3xC10120(S3xC10):20D4480,816

Non-split extensions G=N.Q with N=S3xC10 and Q=D4
extensionφ:Q→Out NdρLabelID
(S3xC10).1D4 = C40:1D6φ: D4/C2C22 ⊆ Out S3xC101204+(S3xC10).1D4480,329
(S3xC10).2D4 = D40:S3φ: D4/C2C22 ⊆ Out S3xC101204(S3xC10).2D4480,330
(S3xC10).3D4 = Dic20:S3φ: D4/C2C22 ⊆ Out S3xC102404(S3xC10).3D4480,339
(S3xC10).4D4 = C40.2D6φ: D4/C2C22 ⊆ Out S3xC102404-(S3xC10).4D4480,350
(S3xC10).5D4 = (C2xD12).D5φ: D4/C2C22 ⊆ Out S3xC10240(S3xC10).5D4480,499
(S3xC10).6D4 = D6.D20φ: D4/C2C22 ⊆ Out S3xC10240(S3xC10).6D4480,503
(S3xC10).7D4 = D6.9D20φ: D4/C2C22 ⊆ Out S3xC10240(S3xC10).7D4480,533
(S3xC10).8D4 = D60.C22φ: D4/C2C22 ⊆ Out S3xC101208+(S3xC10).8D4480,556
(S3xC10).9D4 = C60.10C23φ: D4/C2C22 ⊆ Out S3xC102408-(S3xC10).9D4480,562
(S3xC10).10D4 = D20.24D6φ: D4/C2C22 ⊆ Out S3xC102408-(S3xC10).10D4480,569
(S3xC10).11D4 = C60.19C23φ: D4/C2C22 ⊆ Out S3xC102408+(S3xC10).11D4480,571
(S3xC10).12D4 = D12:D10φ: D4/C2C22 ⊆ Out S3xC101208+(S3xC10).12D4480,580
(S3xC10).13D4 = Dic10.26D6φ: D4/C2C22 ⊆ Out S3xC102408-(S3xC10).13D4480,586
(S3xC10).14D4 = D20.27D6φ: D4/C2C22 ⊆ Out S3xC102408-(S3xC10).14D4480,593
(S3xC10).15D4 = Dic10.27D6φ: D4/C2C22 ⊆ Out S3xC102408+(S3xC10).15D4480,595
(S3xC10).16D4 = (S3xC10).D4φ: D4/C2C22 ⊆ Out S3xC10240(S3xC10).16D4480,631
(S3xC10).17D4 = S3xC40:C2φ: D4/C4C2 ⊆ Out S3xC101204(S3xC10).17D4480,327
(S3xC10).18D4 = S3xD40φ: D4/C4C2 ⊆ Out S3xC101204+(S3xC10).18D4480,328
(S3xC10).19D4 = S3xDic20φ: D4/C4C2 ⊆ Out S3xC102404-(S3xC10).19D4480,338
(S3xC10).20D4 = D6.1D20φ: D4/C4C2 ⊆ Out S3xC102404(S3xC10).20D4480,348
(S3xC10).21D4 = D40:7S3φ: D4/C4C2 ⊆ Out S3xC102404-(S3xC10).21D4480,349
(S3xC10).22D4 = D120:5C2φ: D4/C4C2 ⊆ Out S3xC102404+(S3xC10).22D4480,351
(S3xC10).23D4 = S3xC4:Dic5φ: D4/C4C2 ⊆ Out S3xC10240(S3xC10).23D4480,502
(S3xC10).24D4 = S3xD10:C4φ: D4/C4C2 ⊆ Out S3xC10120(S3xC10).24D4480,548
(S3xC10).25D4 = C5xD8:3S3φ: D4/C4C2 ⊆ Out S3xC102404(S3xC10).25D4480,791
(S3xC10).26D4 = C5xQ8.7D6φ: D4/C4C2 ⊆ Out S3xC102404(S3xC10).26D4480,795
(S3xC10).27D4 = C5xD24:C2φ: D4/C4C2 ⊆ Out S3xC102404(S3xC10).27D4480,798
(S3xC10).28D4 = D6:Dic5:C2φ: D4/C22C2 ⊆ Out S3xC10240(S3xC10).28D4480,427
(S3xC10).29D4 = S3xC10.D4φ: D4/C22C2 ⊆ Out S3xC10240(S3xC10).29D4480,475
(S3xC10).30D4 = D10:C4:S3φ: D4/C22C2 ⊆ Out S3xC10240(S3xC10).30D4480,528
(S3xC10).31D4 = S3xD4:D5φ: D4/C22C2 ⊆ Out S3xC101208+(S3xC10).31D4480,555
(S3xC10).32D4 = S3xD4.D5φ: D4/C22C2 ⊆ Out S3xC101208-(S3xC10).32D4480,561
(S3xC10).33D4 = D20:10D6φ: D4/C22C2 ⊆ Out S3xC101208-(S3xC10).33D4480,570
(S3xC10).34D4 = D12.9D10φ: D4/C22C2 ⊆ Out S3xC101208+(S3xC10).34D4480,572
(S3xC10).35D4 = S3xQ8:D5φ: D4/C22C2 ⊆ Out S3xC101208+(S3xC10).35D4480,579
(S3xC10).36D4 = S3xC5:Q16φ: D4/C22C2 ⊆ Out S3xC102408-(S3xC10).36D4480,585
(S3xC10).37D4 = D20.28D6φ: D4/C22C2 ⊆ Out S3xC102408-(S3xC10).37D4480,594
(S3xC10).38D4 = C60.44C23φ: D4/C22C2 ⊆ Out S3xC102408+(S3xC10).38D4480,596
(S3xC10).39D4 = S3xC23.D5φ: D4/C22C2 ⊆ Out S3xC10120(S3xC10).39D4480,630
(S3xC10).40D4 = C5xC23.9D6φ: D4/C22C2 ⊆ Out S3xC10240(S3xC10).40D4480,762
(S3xC10).41D4 = C5xD6.D4φ: D4/C22C2 ⊆ Out S3xC10240(S3xC10).41D4480,773
(S3xC10).42D4 = C5xD8:S3φ: D4/C22C2 ⊆ Out S3xC101204(S3xC10).42D4480,790
(S3xC10).43D4 = C5xQ8:3D6φ: D4/C22C2 ⊆ Out S3xC101204(S3xC10).43D4480,793
(S3xC10).44D4 = C5xD4.D6φ: D4/C22C2 ⊆ Out S3xC102404(S3xC10).44D4480,794
(S3xC10).45D4 = C5xQ16:S3φ: D4/C22C2 ⊆ Out S3xC102404(S3xC10).45D4480,797
(S3xC10).46D4 = C5xS3xC22:C4φ: trivial image120(S3xC10).46D4480,759
(S3xC10).47D4 = C5xS3xC4:C4φ: trivial image240(S3xC10).47D4480,770
(S3xC10).48D4 = C5xS3xD8φ: trivial image1204(S3xC10).48D4480,789
(S3xC10).49D4 = C5xS3xSD16φ: trivial image1204(S3xC10).49D4480,792
(S3xC10).50D4 = C5xS3xQ16φ: trivial image2404(S3xC10).50D4480,796

׿
x
:
Z
F
o
wr
Q
<