extension | φ:Q→Out N | d | ρ | Label | ID |
(S3xC10).1D4 = C40:1D6 | φ: D4/C2 → C22 ⊆ Out S3xC10 | 120 | 4+ | (S3xC10).1D4 | 480,329 |
(S3xC10).2D4 = D40:S3 | φ: D4/C2 → C22 ⊆ Out S3xC10 | 120 | 4 | (S3xC10).2D4 | 480,330 |
(S3xC10).3D4 = Dic20:S3 | φ: D4/C2 → C22 ⊆ Out S3xC10 | 240 | 4 | (S3xC10).3D4 | 480,339 |
(S3xC10).4D4 = C40.2D6 | φ: D4/C2 → C22 ⊆ Out S3xC10 | 240 | 4- | (S3xC10).4D4 | 480,350 |
(S3xC10).5D4 = (C2xD12).D5 | φ: D4/C2 → C22 ⊆ Out S3xC10 | 240 | | (S3xC10).5D4 | 480,499 |
(S3xC10).6D4 = D6.D20 | φ: D4/C2 → C22 ⊆ Out S3xC10 | 240 | | (S3xC10).6D4 | 480,503 |
(S3xC10).7D4 = D6.9D20 | φ: D4/C2 → C22 ⊆ Out S3xC10 | 240 | | (S3xC10).7D4 | 480,533 |
(S3xC10).8D4 = D60.C22 | φ: D4/C2 → C22 ⊆ Out S3xC10 | 120 | 8+ | (S3xC10).8D4 | 480,556 |
(S3xC10).9D4 = C60.10C23 | φ: D4/C2 → C22 ⊆ Out S3xC10 | 240 | 8- | (S3xC10).9D4 | 480,562 |
(S3xC10).10D4 = D20.24D6 | φ: D4/C2 → C22 ⊆ Out S3xC10 | 240 | 8- | (S3xC10).10D4 | 480,569 |
(S3xC10).11D4 = C60.19C23 | φ: D4/C2 → C22 ⊆ Out S3xC10 | 240 | 8+ | (S3xC10).11D4 | 480,571 |
(S3xC10).12D4 = D12:D10 | φ: D4/C2 → C22 ⊆ Out S3xC10 | 120 | 8+ | (S3xC10).12D4 | 480,580 |
(S3xC10).13D4 = Dic10.26D6 | φ: D4/C2 → C22 ⊆ Out S3xC10 | 240 | 8- | (S3xC10).13D4 | 480,586 |
(S3xC10).14D4 = D20.27D6 | φ: D4/C2 → C22 ⊆ Out S3xC10 | 240 | 8- | (S3xC10).14D4 | 480,593 |
(S3xC10).15D4 = Dic10.27D6 | φ: D4/C2 → C22 ⊆ Out S3xC10 | 240 | 8+ | (S3xC10).15D4 | 480,595 |
(S3xC10).16D4 = (S3xC10).D4 | φ: D4/C2 → C22 ⊆ Out S3xC10 | 240 | | (S3xC10).16D4 | 480,631 |
(S3xC10).17D4 = S3xC40:C2 | φ: D4/C4 → C2 ⊆ Out S3xC10 | 120 | 4 | (S3xC10).17D4 | 480,327 |
(S3xC10).18D4 = S3xD40 | φ: D4/C4 → C2 ⊆ Out S3xC10 | 120 | 4+ | (S3xC10).18D4 | 480,328 |
(S3xC10).19D4 = S3xDic20 | φ: D4/C4 → C2 ⊆ Out S3xC10 | 240 | 4- | (S3xC10).19D4 | 480,338 |
(S3xC10).20D4 = D6.1D20 | φ: D4/C4 → C2 ⊆ Out S3xC10 | 240 | 4 | (S3xC10).20D4 | 480,348 |
(S3xC10).21D4 = D40:7S3 | φ: D4/C4 → C2 ⊆ Out S3xC10 | 240 | 4- | (S3xC10).21D4 | 480,349 |
(S3xC10).22D4 = D120:5C2 | φ: D4/C4 → C2 ⊆ Out S3xC10 | 240 | 4+ | (S3xC10).22D4 | 480,351 |
(S3xC10).23D4 = S3xC4:Dic5 | φ: D4/C4 → C2 ⊆ Out S3xC10 | 240 | | (S3xC10).23D4 | 480,502 |
(S3xC10).24D4 = S3xD10:C4 | φ: D4/C4 → C2 ⊆ Out S3xC10 | 120 | | (S3xC10).24D4 | 480,548 |
(S3xC10).25D4 = C5xD8:3S3 | φ: D4/C4 → C2 ⊆ Out S3xC10 | 240 | 4 | (S3xC10).25D4 | 480,791 |
(S3xC10).26D4 = C5xQ8.7D6 | φ: D4/C4 → C2 ⊆ Out S3xC10 | 240 | 4 | (S3xC10).26D4 | 480,795 |
(S3xC10).27D4 = C5xD24:C2 | φ: D4/C4 → C2 ⊆ Out S3xC10 | 240 | 4 | (S3xC10).27D4 | 480,798 |
(S3xC10).28D4 = D6:Dic5:C2 | φ: D4/C22 → C2 ⊆ Out S3xC10 | 240 | | (S3xC10).28D4 | 480,427 |
(S3xC10).29D4 = S3xC10.D4 | φ: D4/C22 → C2 ⊆ Out S3xC10 | 240 | | (S3xC10).29D4 | 480,475 |
(S3xC10).30D4 = D10:C4:S3 | φ: D4/C22 → C2 ⊆ Out S3xC10 | 240 | | (S3xC10).30D4 | 480,528 |
(S3xC10).31D4 = S3xD4:D5 | φ: D4/C22 → C2 ⊆ Out S3xC10 | 120 | 8+ | (S3xC10).31D4 | 480,555 |
(S3xC10).32D4 = S3xD4.D5 | φ: D4/C22 → C2 ⊆ Out S3xC10 | 120 | 8- | (S3xC10).32D4 | 480,561 |
(S3xC10).33D4 = D20:10D6 | φ: D4/C22 → C2 ⊆ Out S3xC10 | 120 | 8- | (S3xC10).33D4 | 480,570 |
(S3xC10).34D4 = D12.9D10 | φ: D4/C22 → C2 ⊆ Out S3xC10 | 120 | 8+ | (S3xC10).34D4 | 480,572 |
(S3xC10).35D4 = S3xQ8:D5 | φ: D4/C22 → C2 ⊆ Out S3xC10 | 120 | 8+ | (S3xC10).35D4 | 480,579 |
(S3xC10).36D4 = S3xC5:Q16 | φ: D4/C22 → C2 ⊆ Out S3xC10 | 240 | 8- | (S3xC10).36D4 | 480,585 |
(S3xC10).37D4 = D20.28D6 | φ: D4/C22 → C2 ⊆ Out S3xC10 | 240 | 8- | (S3xC10).37D4 | 480,594 |
(S3xC10).38D4 = C60.44C23 | φ: D4/C22 → C2 ⊆ Out S3xC10 | 240 | 8+ | (S3xC10).38D4 | 480,596 |
(S3xC10).39D4 = S3xC23.D5 | φ: D4/C22 → C2 ⊆ Out S3xC10 | 120 | | (S3xC10).39D4 | 480,630 |
(S3xC10).40D4 = C5xC23.9D6 | φ: D4/C22 → C2 ⊆ Out S3xC10 | 240 | | (S3xC10).40D4 | 480,762 |
(S3xC10).41D4 = C5xD6.D4 | φ: D4/C22 → C2 ⊆ Out S3xC10 | 240 | | (S3xC10).41D4 | 480,773 |
(S3xC10).42D4 = C5xD8:S3 | φ: D4/C22 → C2 ⊆ Out S3xC10 | 120 | 4 | (S3xC10).42D4 | 480,790 |
(S3xC10).43D4 = C5xQ8:3D6 | φ: D4/C22 → C2 ⊆ Out S3xC10 | 120 | 4 | (S3xC10).43D4 | 480,793 |
(S3xC10).44D4 = C5xD4.D6 | φ: D4/C22 → C2 ⊆ Out S3xC10 | 240 | 4 | (S3xC10).44D4 | 480,794 |
(S3xC10).45D4 = C5xQ16:S3 | φ: D4/C22 → C2 ⊆ Out S3xC10 | 240 | 4 | (S3xC10).45D4 | 480,797 |
(S3xC10).46D4 = C5xS3xC22:C4 | φ: trivial image | 120 | | (S3xC10).46D4 | 480,759 |
(S3xC10).47D4 = C5xS3xC4:C4 | φ: trivial image | 240 | | (S3xC10).47D4 | 480,770 |
(S3xC10).48D4 = C5xS3xD8 | φ: trivial image | 120 | 4 | (S3xC10).48D4 | 480,789 |
(S3xC10).49D4 = C5xS3xSD16 | φ: trivial image | 120 | 4 | (S3xC10).49D4 | 480,792 |
(S3xC10).50D4 = C5xS3xQ16 | φ: trivial image | 240 | 4 | (S3xC10).50D4 | 480,796 |