Extensions 1→N→G→Q→1 with N=S3×C10 and Q=D4

Direct product G=N×Q with N=S3×C10 and Q=D4
dρLabelID
S3×D4×C10120S3xD4xC10480,1154

Semidirect products G=N:Q with N=S3×C10 and Q=D4
extensionφ:Q→Out NdρLabelID
(S3×C10)⋊1D4 = Dic5⋊D12φ: D4/C2C22 ⊆ Out S3×C10240(S3xC10):1D4480,492
(S3×C10)⋊2D4 = Dic152D4φ: D4/C2C22 ⊆ Out S3×C10240(S3xC10):2D4480,529
(S3×C10)⋊3D4 = D64D20φ: D4/C2C22 ⊆ Out S3×C10120(S3xC10):3D4480,550
(S3×C10)⋊4D4 = D304D4φ: D4/C2C22 ⊆ Out S3×C10120(S3xC10):4D4480,551
(S3×C10)⋊5D4 = D305D4φ: D4/C2C22 ⊆ Out S3×C10120(S3xC10):5D4480,552
(S3×C10)⋊6D4 = Dic154D4φ: D4/C2C22 ⊆ Out S3×C10240(S3xC10):6D4480,634
(S3×C10)⋊7D4 = (S3×C10)⋊D4φ: D4/C2C22 ⊆ Out S3×C10240(S3xC10):7D4480,641
(S3×C10)⋊8D4 = D308D4φ: D4/C2C22 ⊆ Out S3×C10120(S3xC10):8D4480,653
(S3×C10)⋊9D4 = D6⋊D20φ: D4/C4C2 ⊆ Out S3×C10240(S3xC10):9D4480,530
(S3×C10)⋊10D4 = C604D4φ: D4/C4C2 ⊆ Out S3×C10240(S3xC10):10D4480,532
(S3×C10)⋊11D4 = C606D4φ: D4/C4C2 ⊆ Out S3×C10240(S3xC10):11D4480,536
(S3×C10)⋊12D4 = C2×S3×D20φ: D4/C4C2 ⊆ Out S3×C10120(S3xC10):12D4480,1088
(S3×C10)⋊13D4 = C5×Dic3⋊D4φ: D4/C4C2 ⊆ Out S3×C10240(S3xC10):13D4480,763
(S3×C10)⋊14D4 = C5×C12⋊D4φ: D4/C4C2 ⊆ Out S3×C10240(S3xC10):14D4480,774
(S3×C10)⋊15D4 = C5×D63D4φ: D4/C4C2 ⊆ Out S3×C10240(S3xC10):15D4480,817
(S3×C10)⋊16D4 = C15⋊C22≀C2φ: D4/C22C2 ⊆ Out S3×C10120(S3xC10):16D4480,644
(S3×C10)⋊17D4 = (C2×C10)⋊11D12φ: D4/C22C2 ⊆ Out S3×C10120(S3xC10):17D4480,646
(S3×C10)⋊18D4 = C2×S3×C5⋊D4φ: D4/C22C2 ⊆ Out S3×C10120(S3xC10):18D4480,1123
(S3×C10)⋊19D4 = C5×D6⋊D4φ: D4/C22C2 ⊆ Out S3×C10120(S3xC10):19D4480,761
(S3×C10)⋊20D4 = C5×C232D6φ: D4/C22C2 ⊆ Out S3×C10120(S3xC10):20D4480,816

Non-split extensions G=N.Q with N=S3×C10 and Q=D4
extensionφ:Q→Out NdρLabelID
(S3×C10).1D4 = C401D6φ: D4/C2C22 ⊆ Out S3×C101204+(S3xC10).1D4480,329
(S3×C10).2D4 = D40⋊S3φ: D4/C2C22 ⊆ Out S3×C101204(S3xC10).2D4480,330
(S3×C10).3D4 = Dic20⋊S3φ: D4/C2C22 ⊆ Out S3×C102404(S3xC10).3D4480,339
(S3×C10).4D4 = C40.2D6φ: D4/C2C22 ⊆ Out S3×C102404-(S3xC10).4D4480,350
(S3×C10).5D4 = (C2×D12).D5φ: D4/C2C22 ⊆ Out S3×C10240(S3xC10).5D4480,499
(S3×C10).6D4 = D6.D20φ: D4/C2C22 ⊆ Out S3×C10240(S3xC10).6D4480,503
(S3×C10).7D4 = D6.9D20φ: D4/C2C22 ⊆ Out S3×C10240(S3xC10).7D4480,533
(S3×C10).8D4 = D60.C22φ: D4/C2C22 ⊆ Out S3×C101208+(S3xC10).8D4480,556
(S3×C10).9D4 = C60.10C23φ: D4/C2C22 ⊆ Out S3×C102408-(S3xC10).9D4480,562
(S3×C10).10D4 = D20.24D6φ: D4/C2C22 ⊆ Out S3×C102408-(S3xC10).10D4480,569
(S3×C10).11D4 = C60.19C23φ: D4/C2C22 ⊆ Out S3×C102408+(S3xC10).11D4480,571
(S3×C10).12D4 = D12⋊D10φ: D4/C2C22 ⊆ Out S3×C101208+(S3xC10).12D4480,580
(S3×C10).13D4 = Dic10.26D6φ: D4/C2C22 ⊆ Out S3×C102408-(S3xC10).13D4480,586
(S3×C10).14D4 = D20.27D6φ: D4/C2C22 ⊆ Out S3×C102408-(S3xC10).14D4480,593
(S3×C10).15D4 = Dic10.27D6φ: D4/C2C22 ⊆ Out S3×C102408+(S3xC10).15D4480,595
(S3×C10).16D4 = (S3×C10).D4φ: D4/C2C22 ⊆ Out S3×C10240(S3xC10).16D4480,631
(S3×C10).17D4 = S3×C40⋊C2φ: D4/C4C2 ⊆ Out S3×C101204(S3xC10).17D4480,327
(S3×C10).18D4 = S3×D40φ: D4/C4C2 ⊆ Out S3×C101204+(S3xC10).18D4480,328
(S3×C10).19D4 = S3×Dic20φ: D4/C4C2 ⊆ Out S3×C102404-(S3xC10).19D4480,338
(S3×C10).20D4 = D6.1D20φ: D4/C4C2 ⊆ Out S3×C102404(S3xC10).20D4480,348
(S3×C10).21D4 = D407S3φ: D4/C4C2 ⊆ Out S3×C102404-(S3xC10).21D4480,349
(S3×C10).22D4 = D1205C2φ: D4/C4C2 ⊆ Out S3×C102404+(S3xC10).22D4480,351
(S3×C10).23D4 = S3×C4⋊Dic5φ: D4/C4C2 ⊆ Out S3×C10240(S3xC10).23D4480,502
(S3×C10).24D4 = S3×D10⋊C4φ: D4/C4C2 ⊆ Out S3×C10120(S3xC10).24D4480,548
(S3×C10).25D4 = C5×D83S3φ: D4/C4C2 ⊆ Out S3×C102404(S3xC10).25D4480,791
(S3×C10).26D4 = C5×Q8.7D6φ: D4/C4C2 ⊆ Out S3×C102404(S3xC10).26D4480,795
(S3×C10).27D4 = C5×D24⋊C2φ: D4/C4C2 ⊆ Out S3×C102404(S3xC10).27D4480,798
(S3×C10).28D4 = D6⋊Dic5⋊C2φ: D4/C22C2 ⊆ Out S3×C10240(S3xC10).28D4480,427
(S3×C10).29D4 = S3×C10.D4φ: D4/C22C2 ⊆ Out S3×C10240(S3xC10).29D4480,475
(S3×C10).30D4 = D10⋊C4⋊S3φ: D4/C22C2 ⊆ Out S3×C10240(S3xC10).30D4480,528
(S3×C10).31D4 = S3×D4⋊D5φ: D4/C22C2 ⊆ Out S3×C101208+(S3xC10).31D4480,555
(S3×C10).32D4 = S3×D4.D5φ: D4/C22C2 ⊆ Out S3×C101208-(S3xC10).32D4480,561
(S3×C10).33D4 = D2010D6φ: D4/C22C2 ⊆ Out S3×C101208-(S3xC10).33D4480,570
(S3×C10).34D4 = D12.9D10φ: D4/C22C2 ⊆ Out S3×C101208+(S3xC10).34D4480,572
(S3×C10).35D4 = S3×Q8⋊D5φ: D4/C22C2 ⊆ Out S3×C101208+(S3xC10).35D4480,579
(S3×C10).36D4 = S3×C5⋊Q16φ: D4/C22C2 ⊆ Out S3×C102408-(S3xC10).36D4480,585
(S3×C10).37D4 = D20.28D6φ: D4/C22C2 ⊆ Out S3×C102408-(S3xC10).37D4480,594
(S3×C10).38D4 = C60.44C23φ: D4/C22C2 ⊆ Out S3×C102408+(S3xC10).38D4480,596
(S3×C10).39D4 = S3×C23.D5φ: D4/C22C2 ⊆ Out S3×C10120(S3xC10).39D4480,630
(S3×C10).40D4 = C5×C23.9D6φ: D4/C22C2 ⊆ Out S3×C10240(S3xC10).40D4480,762
(S3×C10).41D4 = C5×D6.D4φ: D4/C22C2 ⊆ Out S3×C10240(S3xC10).41D4480,773
(S3×C10).42D4 = C5×D8⋊S3φ: D4/C22C2 ⊆ Out S3×C101204(S3xC10).42D4480,790
(S3×C10).43D4 = C5×Q83D6φ: D4/C22C2 ⊆ Out S3×C101204(S3xC10).43D4480,793
(S3×C10).44D4 = C5×D4.D6φ: D4/C22C2 ⊆ Out S3×C102404(S3xC10).44D4480,794
(S3×C10).45D4 = C5×Q16⋊S3φ: D4/C22C2 ⊆ Out S3×C102404(S3xC10).45D4480,797
(S3×C10).46D4 = C5×S3×C22⋊C4φ: trivial image120(S3xC10).46D4480,759
(S3×C10).47D4 = C5×S3×C4⋊C4φ: trivial image240(S3xC10).47D4480,770
(S3×C10).48D4 = C5×S3×D8φ: trivial image1204(S3xC10).48D4480,789
(S3×C10).49D4 = C5×S3×SD16φ: trivial image1204(S3xC10).49D4480,792
(S3×C10).50D4 = C5×S3×Q16φ: trivial image2404(S3xC10).50D4480,796

׿
×
𝔽